Loading…

A hybrid neuro-fuzzy power system stabilizer for multimachine power systems

A fuzzy basis function network (FBFN) based power system stabilizer (PSS) is presented in this paper to improve power system dynamic stability. The proposed FBFN based PSS provides a natural framework for combining numerical and linguistic information in a uniform fashion. The proposed FBFN is train...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 1998-11, Vol.13 (4), p.1323-1330
Main Authors: Abido, M.A., Abdel-Magid, Y.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A fuzzy basis function network (FBFN) based power system stabilizer (PSS) is presented in this paper to improve power system dynamic stability. The proposed FBFN based PSS provides a natural framework for combining numerical and linguistic information in a uniform fashion. The proposed FBFN is trained over a wide range of operating conditions in order to re-tune the PSS parameters in real-time based on machine loading conditions. The orthogonal least squares (OLS) learning algorithm is developed for designing an adequate and parsimonious FBFN model. Time domain simulations of a single machine infinite bus system and a multimachine power system subject to major disturbances are investigated. The performance of the proposed FBFN PSS is compared with that of conventional (CPSS). The results show the capability of the proposed FBFN PSS to enhance the system damping of local modes of oscillations over a wide range of operating conditions. The decentralized nature of the proposed FBFN PSS makes it easy to install and tune.
ISSN:0885-8950
1558-0679
DOI:10.1109/59.736272