Loading…

Preparation of a biobased polyelectrolyte complex from chitosan and sodium carboxymethyl cellulose and its antibacterial characteristics

Using chitosan (CTS) and sodium carboxymethyl cellulose (CMCNa) as raw biobased materials, polyelectrolyte complex (PEC), which is the product of strong electrostatic interaction between two bio-based polyelectrolytes with opposite charges, was attempted to prepare. To enlarge the reactive contact a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2023-02, Vol.227, p.524-534
Main Authors: Yang, Dong, Gong, Lei, Li, Qing, Fan, Bo, Ma, Cuiluan, He, Yu-Cai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using chitosan (CTS) and sodium carboxymethyl cellulose (CMCNa) as raw biobased materials, polyelectrolyte complex (PEC), which is the product of strong electrostatic interaction between two bio-based polyelectrolytes with opposite charges, was attempted to prepare. To enlarge the reactive contact area between CTS and CMCNa, the crosslinked vacuolar structure of PEC was prepared without addition of cross-linked agent. The preparation conditions had a significant impact on the yield of PEC and the bibulous rate of PEC. When pH, mass ratio of CMC-Na-to-CTS, stirring speed and reaction system temperature were 5, 1:2 [(1 wt% CMCNa, 2 wt% CTS), CMC-Na:CTS = 1:1 (v/v)], 800 rpm, 2 min and 25 °C, the yield of PEC reached 71.2 %. The prepared PEC was characterized by XRD and FT-IR. Afterwards, the antibacterial performance of PEC was examined. The prepared PEC had certain bacteriostatic effect on gram-positive and gram-negative bacteria. The bacteriostasis ratios of PEC against Escherichia coli and Staphylococcus aureus were 18.7 % and 31.3 %, respectively. By controlling the combination parameters of the preparation system, an effective strategy was successfully developed for preparation of biobased PEC with bacteriostatic and crosslinked vacuolar structure through simple physical blending without the application of additional crosslinker.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2022.12.089