Loading…

High-peak-power picosecond deep-UV laser sources

Ultrafast deep-UV laser sources have extensive applications across a wide number of fields, whether biomedicine, photolithography, industrial processing, or state-of-the-art scientific research. However, it has been challenging to obtain deep-UV laser sources with high conversion efficiency and outp...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2022-11, Vol.30 (24), p.43354-43370
Main Authors: Cui, Zijian, Sun, Mingying, Liu, De'an, Zhu, Jianqiang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrafast deep-UV laser sources have extensive applications across a wide number of fields, whether biomedicine, photolithography, industrial processing, or state-of-the-art scientific research. However, it has been challenging to obtain deep-UV laser sources with high conversion efficiency and output peak power. Here, we simultaneously demonstrated high-peak-power picosecond deep-UV laser sources at two typical wavebands of 263.2 and 210.5 nm via the efficient fourth- and fifth-harmonic generation. The highest peak power of 263.2 and 210.5 nm laser radiations were up to 2.13 GW (6.72 ps) and 1.38 GW (5.08 ps). The overall conversion efficiencies from the fundamental wave to the fourth and fifth harmonic were up to 42.9% and 28.8%, respectively. The demonstrated results represent the highest conversion efficiencies and output peak powers of picosecond deep-UV laser sources at present to our knowledge. Additionally, we also systematically characterized the deep-UV optical properties of typical birefringent and nonlinear borate crystals, including α-BaB O , β-BaB O , LiB O , and CsLiB O crystals. The experiments and obtained numerous new optical data in this work will contribute to the generation of ultrahigh-peak-power deep-UV and vacuum-UV laser sources and crucial applications in both science and industry, such as high-energy-density physics, material science, and laser machining.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.474513