Loading…

Potential in vitro action of an adenosine analog and synergism with penicillin against Corynebacterium pseudotuberculosis

Caseous lymphadenitis is a well-known disease caused by Corynebacterium pseudotuberculosis affecting small ruminants with small significance to human health because of its minor zoonotic potential. In both cases, few treatment options are available and conventional antimicrobial therapy is commonly...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of microbiology 2023-03, Vol.54 (1), p.559-563
Main Authors: Bernardino, Pedro Negri, de Paula, Carolina Lechinski, Pereira, Ana Flávia Marques, Ribeiro, Márcio Garcia, de Carvalho Azevedo, Vasco Ariston, Borges, Alexandre Secorun, Fernandes-Júnior, Ary, Oliveira-Filho, José Paes
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Caseous lymphadenitis is a well-known disease caused by Corynebacterium pseudotuberculosis affecting small ruminants with small significance to human health because of its minor zoonotic potential. In both cases, few treatment options are available and conventional antimicrobial therapy is commonly refractory due to development of pyogranulomatous reactions, bringing great interest in discovering novel therapeutics for more suitable approaches. Dideoxynucleotides presented antibacterial action against various bacteria but were never described for C. pseudotuberculosis . Hypothesizing the antimicrobial action of 2’,3’-dideoxiadenosine (ddATP) against C. pseudotuberculosis , we performed for the first time an investigation of its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in the ATCC® 19,410 strain and a well-characterized clinical isolate of C. pseudotuberculosis . We also assessed potential synergism with penicillin. ddATP showed a growth delay effect for C. pseudotuberculosis at 2 µmol/mL and a MIC and MBC of 4 µmol/mL against the ATCC® 19,410 strain, but not for the clinical strain. An antimicrobial effect was observed when using concentrations lower than the MIC of ddATP associated with penicillin for both strains tested. Our data suggest the potential of nucleotide analogs, especially adenosine, and its combination with penicillin, as a possible novel treatment for C. pseudotuberculosis -induced infections, and contributes with knowledge regarding alternative drugs to treat C. pseudotuberculosis infections.
ISSN:1517-8382
1678-4405
DOI:10.1007/s42770-022-00885-0