Loading…

Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies

Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials advances 2023-02, Vol.145, p.213241-213241, Article 213241
Main Authors: Kourouklis, Andreas P, Wahlsten, Adam, Stracuzzi, Alberto, Martyts, Anastasiya, Paganella, Lorenza Garau, Labouesse, Celine, Al-Nuaimi, Dunja, Giampietro, Costanza, Ehret, Alexander E, Tibbitt, Mark W, Mazza, Edoardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23
cites cdi_FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23
container_end_page 213241
container_issue
container_start_page 213241
container_title Biomaterials advances
container_volume 145
creator Kourouklis, Andreas P
Wahlsten, Adam
Stracuzzi, Alberto
Martyts, Anastasiya
Paganella, Lorenza Garau
Labouesse, Celine
Al-Nuaimi, Dunja
Giampietro, Costanza
Ehret, Alexander E
Tibbitt, Mark W
Mazza, Edoardo
description Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.
doi_str_mv 10.1016/j.bioadv.2022.213241
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2755800066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755800066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EolXpHyDkJZsEe_xIskTlKVViA2vLcRyaKomLnSD173GUgljNzNWd10HompKUEirv9mnZOF19p0AAUqAMOD1DS8gySApB8vN_-QKtQ9gTQhgwKQS7RIsYoSCFWCKzcf3gXYtdjXfHyrsw6KEx-OBtCKO3WPcVdqFzkxiGScVNj9kDNrZtsRnbYXLVzuPOmp3uXTysdZ-N0W30j1VjwxW6qHUb7PoUV-jj6fF985Js355fN_fbxHCSD4lhoqYCMl5nJmM2llAWwASjMdVcCw5VLmSlLQGdFVzmWuagq0JyAmUJbIVu57kH775GGwbVNWE6U_fWjUFBJkQeOUgZrXy2mvhx8LZWB9902h8VJWoirPZqJqwmwmomHNtuThvGsrPVX9MvT_YDsBh5QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755800066</pqid></control><display><type>article</type><title>Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies</title><source>ScienceDirect®</source><creator>Kourouklis, Andreas P ; Wahlsten, Adam ; Stracuzzi, Alberto ; Martyts, Anastasiya ; Paganella, Lorenza Garau ; Labouesse, Celine ; Al-Nuaimi, Dunja ; Giampietro, Costanza ; Ehret, Alexander E ; Tibbitt, Mark W ; Mazza, Edoardo</creator><creatorcontrib>Kourouklis, Andreas P ; Wahlsten, Adam ; Stracuzzi, Alberto ; Martyts, Anastasiya ; Paganella, Lorenza Garau ; Labouesse, Celine ; Al-Nuaimi, Dunja ; Giampietro, Costanza ; Ehret, Alexander E ; Tibbitt, Mark W ; Mazza, Edoardo</creatorcontrib><description>Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.</description><identifier>ISSN: 2772-9508</identifier><identifier>EISSN: 2772-9508</identifier><identifier>DOI: 10.1016/j.bioadv.2022.213241</identifier><identifier>PMID: 36529095</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Cell Culture Techniques, Three Dimensional ; Cell Differentiation ; Hydrostatic Pressure ; Mechanotransduction, Cellular ; Osmotic Pressure</subject><ispartof>Biomaterials advances, 2023-02, Vol.145, p.213241-213241, Article 213241</ispartof><rights>Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23</citedby><cites>FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36529095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kourouklis, Andreas P</creatorcontrib><creatorcontrib>Wahlsten, Adam</creatorcontrib><creatorcontrib>Stracuzzi, Alberto</creatorcontrib><creatorcontrib>Martyts, Anastasiya</creatorcontrib><creatorcontrib>Paganella, Lorenza Garau</creatorcontrib><creatorcontrib>Labouesse, Celine</creatorcontrib><creatorcontrib>Al-Nuaimi, Dunja</creatorcontrib><creatorcontrib>Giampietro, Costanza</creatorcontrib><creatorcontrib>Ehret, Alexander E</creatorcontrib><creatorcontrib>Tibbitt, Mark W</creatorcontrib><creatorcontrib>Mazza, Edoardo</creatorcontrib><title>Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies</title><title>Biomaterials advances</title><addtitle>Biomater Adv</addtitle><description>Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.</description><subject>Cell Culture Techniques, Three Dimensional</subject><subject>Cell Differentiation</subject><subject>Hydrostatic Pressure</subject><subject>Mechanotransduction, Cellular</subject><subject>Osmotic Pressure</subject><issn>2772-9508</issn><issn>2772-9508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EolXpHyDkJZsEe_xIskTlKVViA2vLcRyaKomLnSD173GUgljNzNWd10HompKUEirv9mnZOF19p0AAUqAMOD1DS8gySApB8vN_-QKtQ9gTQhgwKQS7RIsYoSCFWCKzcf3gXYtdjXfHyrsw6KEx-OBtCKO3WPcVdqFzkxiGScVNj9kDNrZtsRnbYXLVzuPOmp3uXTysdZ-N0W30j1VjwxW6qHUb7PoUV-jj6fF985Js355fN_fbxHCSD4lhoqYCMl5nJmM2llAWwASjMdVcCw5VLmSlLQGdFVzmWuagq0JyAmUJbIVu57kH775GGwbVNWE6U_fWjUFBJkQeOUgZrXy2mvhx8LZWB9902h8VJWoirPZqJqwmwmomHNtuThvGsrPVX9MvT_YDsBh5QA</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Kourouklis, Andreas P</creator><creator>Wahlsten, Adam</creator><creator>Stracuzzi, Alberto</creator><creator>Martyts, Anastasiya</creator><creator>Paganella, Lorenza Garau</creator><creator>Labouesse, Celine</creator><creator>Al-Nuaimi, Dunja</creator><creator>Giampietro, Costanza</creator><creator>Ehret, Alexander E</creator><creator>Tibbitt, Mark W</creator><creator>Mazza, Edoardo</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202302</creationdate><title>Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies</title><author>Kourouklis, Andreas P ; Wahlsten, Adam ; Stracuzzi, Alberto ; Martyts, Anastasiya ; Paganella, Lorenza Garau ; Labouesse, Celine ; Al-Nuaimi, Dunja ; Giampietro, Costanza ; Ehret, Alexander E ; Tibbitt, Mark W ; Mazza, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cell Culture Techniques, Three Dimensional</topic><topic>Cell Differentiation</topic><topic>Hydrostatic Pressure</topic><topic>Mechanotransduction, Cellular</topic><topic>Osmotic Pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kourouklis, Andreas P</creatorcontrib><creatorcontrib>Wahlsten, Adam</creatorcontrib><creatorcontrib>Stracuzzi, Alberto</creatorcontrib><creatorcontrib>Martyts, Anastasiya</creatorcontrib><creatorcontrib>Paganella, Lorenza Garau</creatorcontrib><creatorcontrib>Labouesse, Celine</creatorcontrib><creatorcontrib>Al-Nuaimi, Dunja</creatorcontrib><creatorcontrib>Giampietro, Costanza</creatorcontrib><creatorcontrib>Ehret, Alexander E</creatorcontrib><creatorcontrib>Tibbitt, Mark W</creatorcontrib><creatorcontrib>Mazza, Edoardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kourouklis, Andreas P</au><au>Wahlsten, Adam</au><au>Stracuzzi, Alberto</au><au>Martyts, Anastasiya</au><au>Paganella, Lorenza Garau</au><au>Labouesse, Celine</au><au>Al-Nuaimi, Dunja</au><au>Giampietro, Costanza</au><au>Ehret, Alexander E</au><au>Tibbitt, Mark W</au><au>Mazza, Edoardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies</atitle><jtitle>Biomaterials advances</jtitle><addtitle>Biomater Adv</addtitle><date>2023-02</date><risdate>2023</risdate><volume>145</volume><spage>213241</spage><epage>213241</epage><pages>213241-213241</pages><artnum>213241</artnum><issn>2772-9508</issn><eissn>2772-9508</eissn><abstract>Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.</abstract><cop>Netherlands</cop><pmid>36529095</pmid><doi>10.1016/j.bioadv.2022.213241</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2772-9508
ispartof Biomaterials advances, 2023-02, Vol.145, p.213241-213241, Article 213241
issn 2772-9508
2772-9508
language eng
recordid cdi_proquest_miscellaneous_2755800066
source ScienceDirect®
subjects Cell Culture Techniques, Three Dimensional
Cell Differentiation
Hydrostatic Pressure
Mechanotransduction, Cellular
Osmotic Pressure
title Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20hydrostatic%20pressure%20and%20osmotic%20stress%20in%203D%20cell%20culture%20for%20mechanobiological%20studies&rft.jtitle=Biomaterials%20advances&rft.au=Kourouklis,%20Andreas%20P&rft.date=2023-02&rft.volume=145&rft.spage=213241&rft.epage=213241&rft.pages=213241-213241&rft.artnum=213241&rft.issn=2772-9508&rft.eissn=2772-9508&rft_id=info:doi/10.1016/j.bioadv.2022.213241&rft_dat=%3Cproquest_cross%3E2755800066%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755800066&rft_id=info:pmid/36529095&rfr_iscdi=true