Loading…
Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies
Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and...
Saved in:
Published in: | Biomaterials advances 2023-02, Vol.145, p.213241-213241, Article 213241 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23 |
container_end_page | 213241 |
container_issue | |
container_start_page | 213241 |
container_title | Biomaterials advances |
container_volume | 145 |
creator | Kourouklis, Andreas P Wahlsten, Adam Stracuzzi, Alberto Martyts, Anastasiya Paganella, Lorenza Garau Labouesse, Celine Al-Nuaimi, Dunja Giampietro, Costanza Ehret, Alexander E Tibbitt, Mark W Mazza, Edoardo |
description | Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals. |
doi_str_mv | 10.1016/j.bioadv.2022.213241 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2755800066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755800066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EolXpHyDkJZsEe_xIskTlKVViA2vLcRyaKomLnSD173GUgljNzNWd10HompKUEirv9mnZOF19p0AAUqAMOD1DS8gySApB8vN_-QKtQ9gTQhgwKQS7RIsYoSCFWCKzcf3gXYtdjXfHyrsw6KEx-OBtCKO3WPcVdqFzkxiGScVNj9kDNrZtsRnbYXLVzuPOmp3uXTysdZ-N0W30j1VjwxW6qHUb7PoUV-jj6fF985Js355fN_fbxHCSD4lhoqYCMl5nJmM2llAWwASjMdVcCw5VLmSlLQGdFVzmWuagq0JyAmUJbIVu57kH775GGwbVNWE6U_fWjUFBJkQeOUgZrXy2mvhx8LZWB9902h8VJWoirPZqJqwmwmomHNtuThvGsrPVX9MvT_YDsBh5QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755800066</pqid></control><display><type>article</type><title>Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies</title><source>ScienceDirect®</source><creator>Kourouklis, Andreas P ; Wahlsten, Adam ; Stracuzzi, Alberto ; Martyts, Anastasiya ; Paganella, Lorenza Garau ; Labouesse, Celine ; Al-Nuaimi, Dunja ; Giampietro, Costanza ; Ehret, Alexander E ; Tibbitt, Mark W ; Mazza, Edoardo</creator><creatorcontrib>Kourouklis, Andreas P ; Wahlsten, Adam ; Stracuzzi, Alberto ; Martyts, Anastasiya ; Paganella, Lorenza Garau ; Labouesse, Celine ; Al-Nuaimi, Dunja ; Giampietro, Costanza ; Ehret, Alexander E ; Tibbitt, Mark W ; Mazza, Edoardo</creatorcontrib><description>Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.</description><identifier>ISSN: 2772-9508</identifier><identifier>EISSN: 2772-9508</identifier><identifier>DOI: 10.1016/j.bioadv.2022.213241</identifier><identifier>PMID: 36529095</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Cell Culture Techniques, Three Dimensional ; Cell Differentiation ; Hydrostatic Pressure ; Mechanotransduction, Cellular ; Osmotic Pressure</subject><ispartof>Biomaterials advances, 2023-02, Vol.145, p.213241-213241, Article 213241</ispartof><rights>Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23</citedby><cites>FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36529095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kourouklis, Andreas P</creatorcontrib><creatorcontrib>Wahlsten, Adam</creatorcontrib><creatorcontrib>Stracuzzi, Alberto</creatorcontrib><creatorcontrib>Martyts, Anastasiya</creatorcontrib><creatorcontrib>Paganella, Lorenza Garau</creatorcontrib><creatorcontrib>Labouesse, Celine</creatorcontrib><creatorcontrib>Al-Nuaimi, Dunja</creatorcontrib><creatorcontrib>Giampietro, Costanza</creatorcontrib><creatorcontrib>Ehret, Alexander E</creatorcontrib><creatorcontrib>Tibbitt, Mark W</creatorcontrib><creatorcontrib>Mazza, Edoardo</creatorcontrib><title>Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies</title><title>Biomaterials advances</title><addtitle>Biomater Adv</addtitle><description>Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.</description><subject>Cell Culture Techniques, Three Dimensional</subject><subject>Cell Differentiation</subject><subject>Hydrostatic Pressure</subject><subject>Mechanotransduction, Cellular</subject><subject>Osmotic Pressure</subject><issn>2772-9508</issn><issn>2772-9508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EolXpHyDkJZsEe_xIskTlKVViA2vLcRyaKomLnSD173GUgljNzNWd10HompKUEirv9mnZOF19p0AAUqAMOD1DS8gySApB8vN_-QKtQ9gTQhgwKQS7RIsYoSCFWCKzcf3gXYtdjXfHyrsw6KEx-OBtCKO3WPcVdqFzkxiGScVNj9kDNrZtsRnbYXLVzuPOmp3uXTysdZ-N0W30j1VjwxW6qHUb7PoUV-jj6fF985Js355fN_fbxHCSD4lhoqYCMl5nJmM2llAWwASjMdVcCw5VLmSlLQGdFVzmWuagq0JyAmUJbIVu57kH775GGwbVNWE6U_fWjUFBJkQeOUgZrXy2mvhx8LZWB9902h8VJWoirPZqJqwmwmomHNtuThvGsrPVX9MvT_YDsBh5QA</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Kourouklis, Andreas P</creator><creator>Wahlsten, Adam</creator><creator>Stracuzzi, Alberto</creator><creator>Martyts, Anastasiya</creator><creator>Paganella, Lorenza Garau</creator><creator>Labouesse, Celine</creator><creator>Al-Nuaimi, Dunja</creator><creator>Giampietro, Costanza</creator><creator>Ehret, Alexander E</creator><creator>Tibbitt, Mark W</creator><creator>Mazza, Edoardo</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202302</creationdate><title>Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies</title><author>Kourouklis, Andreas P ; Wahlsten, Adam ; Stracuzzi, Alberto ; Martyts, Anastasiya ; Paganella, Lorenza Garau ; Labouesse, Celine ; Al-Nuaimi, Dunja ; Giampietro, Costanza ; Ehret, Alexander E ; Tibbitt, Mark W ; Mazza, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cell Culture Techniques, Three Dimensional</topic><topic>Cell Differentiation</topic><topic>Hydrostatic Pressure</topic><topic>Mechanotransduction, Cellular</topic><topic>Osmotic Pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kourouklis, Andreas P</creatorcontrib><creatorcontrib>Wahlsten, Adam</creatorcontrib><creatorcontrib>Stracuzzi, Alberto</creatorcontrib><creatorcontrib>Martyts, Anastasiya</creatorcontrib><creatorcontrib>Paganella, Lorenza Garau</creatorcontrib><creatorcontrib>Labouesse, Celine</creatorcontrib><creatorcontrib>Al-Nuaimi, Dunja</creatorcontrib><creatorcontrib>Giampietro, Costanza</creatorcontrib><creatorcontrib>Ehret, Alexander E</creatorcontrib><creatorcontrib>Tibbitt, Mark W</creatorcontrib><creatorcontrib>Mazza, Edoardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kourouklis, Andreas P</au><au>Wahlsten, Adam</au><au>Stracuzzi, Alberto</au><au>Martyts, Anastasiya</au><au>Paganella, Lorenza Garau</au><au>Labouesse, Celine</au><au>Al-Nuaimi, Dunja</au><au>Giampietro, Costanza</au><au>Ehret, Alexander E</au><au>Tibbitt, Mark W</au><au>Mazza, Edoardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies</atitle><jtitle>Biomaterials advances</jtitle><addtitle>Biomater Adv</addtitle><date>2023-02</date><risdate>2023</risdate><volume>145</volume><spage>213241</spage><epage>213241</epage><pages>213241-213241</pages><artnum>213241</artnum><issn>2772-9508</issn><eissn>2772-9508</eissn><abstract>Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.</abstract><cop>Netherlands</cop><pmid>36529095</pmid><doi>10.1016/j.bioadv.2022.213241</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2772-9508 |
ispartof | Biomaterials advances, 2023-02, Vol.145, p.213241-213241, Article 213241 |
issn | 2772-9508 2772-9508 |
language | eng |
recordid | cdi_proquest_miscellaneous_2755800066 |
source | ScienceDirect® |
subjects | Cell Culture Techniques, Three Dimensional Cell Differentiation Hydrostatic Pressure Mechanotransduction, Cellular Osmotic Pressure |
title | Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20hydrostatic%20pressure%20and%20osmotic%20stress%20in%203D%20cell%20culture%20for%20mechanobiological%20studies&rft.jtitle=Biomaterials%20advances&rft.au=Kourouklis,%20Andreas%20P&rft.date=2023-02&rft.volume=145&rft.spage=213241&rft.epage=213241&rft.pages=213241-213241&rft.artnum=213241&rft.issn=2772-9508&rft.eissn=2772-9508&rft_id=info:doi/10.1016/j.bioadv.2022.213241&rft_dat=%3Cproquest_cross%3E2755800066%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-c35f15274f7c73ec352b923531c35a4a542d856dae02a79468a682ad96402bb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755800066&rft_id=info:pmid/36529095&rfr_iscdi=true |