Loading…

Elucidation of a trigger mechanism for pitting corrosion of stainless steels using submicron resolution scanning electrochemical and photoelectrochemical microscopy

Scanning electrochemical microscopy with submicron resolution shows that the local current density for dissolution of certain MnS inclusions in stainless steel can be extremely high ( > 1 A cm exp -2 ) and appears to be chloride-catalyzed, a result not anticipated by previous work on chemically p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Electrochemical Society 1998-08, Vol.145 (8), p.2664-2672
Main Authors: WILLIAMS, D. E, MOHIUDDIN, T. F, YING YANG ZHU
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-6bc05d195c17d88ecf63a85018ed4857ab0a07cb272110361a9871212fc74d093
cites
container_end_page 2672
container_issue 8
container_start_page 2664
container_title Journal of the Electrochemical Society
container_volume 145
creator WILLIAMS, D. E
MOHIUDDIN, T. F
YING YANG ZHU
description Scanning electrochemical microscopy with submicron resolution shows that the local current density for dissolution of certain MnS inclusions in stainless steel can be extremely high ( > 1 A cm exp -2 ) and appears to be chloride-catalyzed, a result not anticipated by previous work on chemically prepared MnS. The dissolution forms a sulfur-rich crust extending over the inclusion and the surrounding metal. Photoelectrochemical and optical microscopy indicate that formation of a sulfur-rich stain around an inclusion is a necessary preliminary to the initiation of a pit and show attack on the metal underneath the stain. Therefore it is reasonable to propose that the very high local current density of inclusion dissolution leads to a significant local concentration of chloride under the crust, as a consequence of electromigration to support the current, and may also cause a significant decrease in the local pH as a consequence of the chemistry of the inclusion dissolution reaction, especially if the inclusion also contains some Cr. It is then further reasonable to propose that the conditions generated under the sulfur crust might be sufficiently extreme to cause the stainless steel to depassivate and a pit to trigger. Material studied: 316F stainless steel.
doi_str_mv 10.1149/1.1838697
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27562905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27562905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-6bc05d195c17d88ecf63a85018ed4857ab0a07cb272110361a9871212fc74d093</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EEqWw4A-8QEgsUjx52VmiqjykSmxgHTmO0xo5dvA4i_4PH0r6EAtWM6N75mo0l5BbYAuAvHqEBYhMlBU_IzOo8iLhAHBOZoxBluRlAZfkCvFrGkHkfEZ-VnZUppXReEd9RyWNwWw2OtBeq610Bnva-UAHE6NxG6p8CB5PMEZpnNWIU6e1RTrinsGx6Y0KExM0ejsevFFJ5_aqtlrF4NVWT5C0VLqWDlsf_X_h4IHKD7trctFJi_rmVOfk83n1sXxN1u8vb8undaIyXsWkbBQrWqgKBbwVQquuzKQoGAjd5qLgsmGScdWkPAVgWQmyEhxSSDvF85ZV2ZzcH32H4L9HjbHuDSptrXTaj1invCjTihUT-HAE9xdi0F09BNPLsKuB1fscaqhPOUzs3clUTj-wXZBOGfxbSDPOmWDZLy_ni-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27562905</pqid></control><display><type>article</type><title>Elucidation of a trigger mechanism for pitting corrosion of stainless steels using submicron resolution scanning electrochemical and photoelectrochemical microscopy</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>WILLIAMS, D. E ; MOHIUDDIN, T. F ; YING YANG ZHU</creator><creatorcontrib>WILLIAMS, D. E ; MOHIUDDIN, T. F ; YING YANG ZHU</creatorcontrib><description>Scanning electrochemical microscopy with submicron resolution shows that the local current density for dissolution of certain MnS inclusions in stainless steel can be extremely high ( &gt; 1 A cm exp -2 ) and appears to be chloride-catalyzed, a result not anticipated by previous work on chemically prepared MnS. The dissolution forms a sulfur-rich crust extending over the inclusion and the surrounding metal. Photoelectrochemical and optical microscopy indicate that formation of a sulfur-rich stain around an inclusion is a necessary preliminary to the initiation of a pit and show attack on the metal underneath the stain. Therefore it is reasonable to propose that the very high local current density of inclusion dissolution leads to a significant local concentration of chloride under the crust, as a consequence of electromigration to support the current, and may also cause a significant decrease in the local pH as a consequence of the chemistry of the inclusion dissolution reaction, especially if the inclusion also contains some Cr. It is then further reasonable to propose that the conditions generated under the sulfur crust might be sufficiently extreme to cause the stainless steel to depassivate and a pit to trigger. Material studied: 316F stainless steel.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1.1838697</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>Pennington, NJ: Electrochemical Society</publisher><subject>Applied sciences ; Corrosion ; Corrosion environments ; Exact sciences and technology ; Metals. Metallurgy</subject><ispartof>Journal of the Electrochemical Society, 1998-08, Vol.145 (8), p.2664-2672</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-6bc05d195c17d88ecf63a85018ed4857ab0a07cb272110361a9871212fc74d093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2377080$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WILLIAMS, D. E</creatorcontrib><creatorcontrib>MOHIUDDIN, T. F</creatorcontrib><creatorcontrib>YING YANG ZHU</creatorcontrib><title>Elucidation of a trigger mechanism for pitting corrosion of stainless steels using submicron resolution scanning electrochemical and photoelectrochemical microscopy</title><title>Journal of the Electrochemical Society</title><description>Scanning electrochemical microscopy with submicron resolution shows that the local current density for dissolution of certain MnS inclusions in stainless steel can be extremely high ( &gt; 1 A cm exp -2 ) and appears to be chloride-catalyzed, a result not anticipated by previous work on chemically prepared MnS. The dissolution forms a sulfur-rich crust extending over the inclusion and the surrounding metal. Photoelectrochemical and optical microscopy indicate that formation of a sulfur-rich stain around an inclusion is a necessary preliminary to the initiation of a pit and show attack on the metal underneath the stain. Therefore it is reasonable to propose that the very high local current density of inclusion dissolution leads to a significant local concentration of chloride under the crust, as a consequence of electromigration to support the current, and may also cause a significant decrease in the local pH as a consequence of the chemistry of the inclusion dissolution reaction, especially if the inclusion also contains some Cr. It is then further reasonable to propose that the conditions generated under the sulfur crust might be sufficiently extreme to cause the stainless steel to depassivate and a pit to trigger. Material studied: 316F stainless steel.</description><subject>Applied sciences</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Exact sciences and technology</subject><subject>Metals. Metallurgy</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpdkctOwzAQRS0EEqWw4A-8QEgsUjx52VmiqjykSmxgHTmO0xo5dvA4i_4PH0r6EAtWM6N75mo0l5BbYAuAvHqEBYhMlBU_IzOo8iLhAHBOZoxBluRlAZfkCvFrGkHkfEZ-VnZUppXReEd9RyWNwWw2OtBeq610Bnva-UAHE6NxG6p8CB5PMEZpnNWIU6e1RTrinsGx6Y0KExM0ejsevFFJ5_aqtlrF4NVWT5C0VLqWDlsf_X_h4IHKD7trctFJi_rmVOfk83n1sXxN1u8vb8undaIyXsWkbBQrWqgKBbwVQquuzKQoGAjd5qLgsmGScdWkPAVgWQmyEhxSSDvF85ZV2ZzcH32H4L9HjbHuDSptrXTaj1invCjTihUT-HAE9xdi0F09BNPLsKuB1fscaqhPOUzs3clUTj-wXZBOGfxbSDPOmWDZLy_ni-U</recordid><startdate>19980801</startdate><enddate>19980801</enddate><creator>WILLIAMS, D. E</creator><creator>MOHIUDDIN, T. F</creator><creator>YING YANG ZHU</creator><general>Electrochemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19980801</creationdate><title>Elucidation of a trigger mechanism for pitting corrosion of stainless steels using submicron resolution scanning electrochemical and photoelectrochemical microscopy</title><author>WILLIAMS, D. E ; MOHIUDDIN, T. F ; YING YANG ZHU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-6bc05d195c17d88ecf63a85018ed4857ab0a07cb272110361a9871212fc74d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Exact sciences and technology</topic><topic>Metals. Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WILLIAMS, D. E</creatorcontrib><creatorcontrib>MOHIUDDIN, T. F</creatorcontrib><creatorcontrib>YING YANG ZHU</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WILLIAMS, D. E</au><au>MOHIUDDIN, T. F</au><au>YING YANG ZHU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidation of a trigger mechanism for pitting corrosion of stainless steels using submicron resolution scanning electrochemical and photoelectrochemical microscopy</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>1998-08-01</date><risdate>1998</risdate><volume>145</volume><issue>8</issue><spage>2664</spage><epage>2672</epage><pages>2664-2672</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Scanning electrochemical microscopy with submicron resolution shows that the local current density for dissolution of certain MnS inclusions in stainless steel can be extremely high ( &gt; 1 A cm exp -2 ) and appears to be chloride-catalyzed, a result not anticipated by previous work on chemically prepared MnS. The dissolution forms a sulfur-rich crust extending over the inclusion and the surrounding metal. Photoelectrochemical and optical microscopy indicate that formation of a sulfur-rich stain around an inclusion is a necessary preliminary to the initiation of a pit and show attack on the metal underneath the stain. Therefore it is reasonable to propose that the very high local current density of inclusion dissolution leads to a significant local concentration of chloride under the crust, as a consequence of electromigration to support the current, and may also cause a significant decrease in the local pH as a consequence of the chemistry of the inclusion dissolution reaction, especially if the inclusion also contains some Cr. It is then further reasonable to propose that the conditions generated under the sulfur crust might be sufficiently extreme to cause the stainless steel to depassivate and a pit to trigger. Material studied: 316F stainless steel.</abstract><cop>Pennington, NJ</cop><pub>Electrochemical Society</pub><doi>10.1149/1.1838697</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 1998-08, Vol.145 (8), p.2664-2672
issn 0013-4651
1945-7111
language eng
recordid cdi_proquest_miscellaneous_27562905
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Applied sciences
Corrosion
Corrosion environments
Exact sciences and technology
Metals. Metallurgy
title Elucidation of a trigger mechanism for pitting corrosion of stainless steels using submicron resolution scanning electrochemical and photoelectrochemical microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidation%20of%20a%20trigger%20mechanism%20for%20pitting%20corrosion%20of%20stainless%20steels%20using%20submicron%20resolution%20scanning%20electrochemical%20and%20photoelectrochemical%20microscopy&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=WILLIAMS,%20D.%20E&rft.date=1998-08-01&rft.volume=145&rft.issue=8&rft.spage=2664&rft.epage=2672&rft.pages=2664-2672&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1.1838697&rft_dat=%3Cproquest_cross%3E27562905%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-6bc05d195c17d88ecf63a85018ed4857ab0a07cb272110361a9871212fc74d093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27562905&rft_id=info:pmid/&rfr_iscdi=true