Loading…

Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte

Yttria-stabilized zirconia (YSZ) electrolytes with diverse microstructures were prepared by using nano-size (Y 2O 3) 0.08(ZrO 2) 0.92 powders as precursors through conventional sintering in air. The electrolytes were tested by AC impedance spectroscopy to elucidate the contribution of intragranular...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2002-09, Vol.335 (1), p.246-252
Main Authors: Chen, X.J, Khor, K.A, Chan, S.H, Yu, L.G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-a961c6b6c2495021280ce7c97b302361de5655e77ad7bcd0bba488b4dcb491b73
cites cdi_FETCH-LOGICAL-c486t-a961c6b6c2495021280ce7c97b302361de5655e77ad7bcd0bba488b4dcb491b73
container_end_page 252
container_issue 1
container_start_page 246
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 335
creator Chen, X.J
Khor, K.A
Chan, S.H
Yu, L.G
description Yttria-stabilized zirconia (YSZ) electrolytes with diverse microstructures were prepared by using nano-size (Y 2O 3) 0.08(ZrO 2) 0.92 powders as precursors through conventional sintering in air. The electrolytes were tested by AC impedance spectroscopy to elucidate the contribution of intragranular and intergranular conductivity to the total ionic conductivity. The intragranular conductivity and intergranular conductivity were correlated with the microstructures of the electrolyte to interpret the transportation of oxygen ions through the electrolyte. The intragranular conductivity was found to be dominated mainly by the relative density while the intergranular conductivity strongly depended on the grain size and grain boundary area of the electrolyte. The sintering temperature and isothermal time dependence of ionic conductivity reached a maximum value of 0.105 S/cm at a sintering temperature of 1350 °C for 4 h and 0.112 S/cm at a holding time of 8 h at 1250 °C when measured at 1000 °C, respectively. Concepts for improving the ionic conductivity of YSZ electrolyte were reviewed.
doi_str_mv 10.1016/S0921-5093(01)01935-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27565065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509301019359</els_id><sourcerecordid>27565065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-a961c6b6c2495021280ce7c97b302361de5655e77ad7bcd0bba488b4dcb491b73</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVJoZttH6HgS0p6cDKyLdk6lbCk7UIgh6RnIY3HdIrXTiR5YfP0tbMhOeY08PPN_MwnxFcJFxKkvrwDU8hcgSnPQX4HaUqVmw9iJZu6zCtT6hOxekU-idMY_wGArECthN0OXT_RgJSNXbZjDGNMYcI0hTkZsvSXMh4HxgzHoZ1z3nM6LOwhpcAuj8l57vmJ2uyJwwyxy6gnTGHsD4k-i4-d6yN9eZlr8efn9f3md35z-2u7ubrJsWp0yp3RErXXWFRGQSGLBpBqNLUvoSi1bElppaiuXVt7bMF7VzWNr1r0lZG-Ltfi2_HuQxgfJ4rJ7jgi9b0baJyiLer5AGg1g-oILp_GQJ19CLxz4WAl2EWnfdZpF1cWpH3Wac28d_ZS4CK6vgtuQI5vy2UDTQEL9-PI0fztninYiLz4bTnMVmw78jtN_wFz8YuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27565065</pqid></control><display><type>article</type><title>Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte</title><source>ScienceDirect Journals</source><creator>Chen, X.J ; Khor, K.A ; Chan, S.H ; Yu, L.G</creator><creatorcontrib>Chen, X.J ; Khor, K.A ; Chan, S.H ; Yu, L.G</creatorcontrib><description>Yttria-stabilized zirconia (YSZ) electrolytes with diverse microstructures were prepared by using nano-size (Y 2O 3) 0.08(ZrO 2) 0.92 powders as precursors through conventional sintering in air. The electrolytes were tested by AC impedance spectroscopy to elucidate the contribution of intragranular and intergranular conductivity to the total ionic conductivity. The intragranular conductivity and intergranular conductivity were correlated with the microstructures of the electrolyte to interpret the transportation of oxygen ions through the electrolyte. The intragranular conductivity was found to be dominated mainly by the relative density while the intergranular conductivity strongly depended on the grain size and grain boundary area of the electrolyte. The sintering temperature and isothermal time dependence of ionic conductivity reached a maximum value of 0.105 S/cm at a sintering temperature of 1350 °C for 4 h and 0.112 S/cm at a holding time of 8 h at 1250 °C when measured at 1000 °C, respectively. Concepts for improving the ionic conductivity of YSZ electrolyte were reviewed.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/S0921-5093(01)01935-9</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Diffusion in solids ; Exact sciences and technology ; Intergranular conductivity ; Intragranular conductivity ; Ionic conductivity ; Physics ; Self-diffusion and ionic conduction in nonmetals ; Transport properties of condensed matter (nonelectronic) ; Yttria-stabilized zirconia electrolyte</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2002-09, Vol.335 (1), p.246-252</ispartof><rights>2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-a961c6b6c2495021280ce7c97b302361de5655e77ad7bcd0bba488b4dcb491b73</citedby><cites>FETCH-LOGICAL-c486t-a961c6b6c2495021280ce7c97b302361de5655e77ad7bcd0bba488b4dcb491b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13808209$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, X.J</creatorcontrib><creatorcontrib>Khor, K.A</creatorcontrib><creatorcontrib>Chan, S.H</creatorcontrib><creatorcontrib>Yu, L.G</creatorcontrib><title>Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Yttria-stabilized zirconia (YSZ) electrolytes with diverse microstructures were prepared by using nano-size (Y 2O 3) 0.08(ZrO 2) 0.92 powders as precursors through conventional sintering in air. The electrolytes were tested by AC impedance spectroscopy to elucidate the contribution of intragranular and intergranular conductivity to the total ionic conductivity. The intragranular conductivity and intergranular conductivity were correlated with the microstructures of the electrolyte to interpret the transportation of oxygen ions through the electrolyte. The intragranular conductivity was found to be dominated mainly by the relative density while the intergranular conductivity strongly depended on the grain size and grain boundary area of the electrolyte. The sintering temperature and isothermal time dependence of ionic conductivity reached a maximum value of 0.105 S/cm at a sintering temperature of 1350 °C for 4 h and 0.112 S/cm at a holding time of 8 h at 1250 °C when measured at 1000 °C, respectively. Concepts for improving the ionic conductivity of YSZ electrolyte were reviewed.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Diffusion in solids</subject><subject>Exact sciences and technology</subject><subject>Intergranular conductivity</subject><subject>Intragranular conductivity</subject><subject>Ionic conductivity</subject><subject>Physics</subject><subject>Self-diffusion and ionic conduction in nonmetals</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><subject>Yttria-stabilized zirconia electrolyte</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkMFq3DAQhkVJoZttH6HgS0p6cDKyLdk6lbCk7UIgh6RnIY3HdIrXTiR5YfP0tbMhOeY08PPN_MwnxFcJFxKkvrwDU8hcgSnPQX4HaUqVmw9iJZu6zCtT6hOxekU-idMY_wGArECthN0OXT_RgJSNXbZjDGNMYcI0hTkZsvSXMh4HxgzHoZ1z3nM6LOwhpcAuj8l57vmJ2uyJwwyxy6gnTGHsD4k-i4-d6yN9eZlr8efn9f3md35z-2u7ubrJsWp0yp3RErXXWFRGQSGLBpBqNLUvoSi1bElppaiuXVt7bMF7VzWNr1r0lZG-Ltfi2_HuQxgfJ4rJ7jgi9b0baJyiLer5AGg1g-oILp_GQJ19CLxz4WAl2EWnfdZpF1cWpH3Wac28d_ZS4CK6vgtuQI5vy2UDTQEL9-PI0fztninYiLz4bTnMVmw78jtN_wFz8YuE</recordid><startdate>20020925</startdate><enddate>20020925</enddate><creator>Chen, X.J</creator><creator>Khor, K.A</creator><creator>Chan, S.H</creator><creator>Yu, L.G</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020925</creationdate><title>Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte</title><author>Chen, X.J ; Khor, K.A ; Chan, S.H ; Yu, L.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-a961c6b6c2495021280ce7c97b302361de5655e77ad7bcd0bba488b4dcb491b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Diffusion in solids</topic><topic>Exact sciences and technology</topic><topic>Intergranular conductivity</topic><topic>Intragranular conductivity</topic><topic>Ionic conductivity</topic><topic>Physics</topic><topic>Self-diffusion and ionic conduction in nonmetals</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><topic>Yttria-stabilized zirconia electrolyte</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, X.J</creatorcontrib><creatorcontrib>Khor, K.A</creatorcontrib><creatorcontrib>Chan, S.H</creatorcontrib><creatorcontrib>Yu, L.G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, X.J</au><au>Khor, K.A</au><au>Chan, S.H</au><au>Yu, L.G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2002-09-25</date><risdate>2002</risdate><volume>335</volume><issue>1</issue><spage>246</spage><epage>252</epage><pages>246-252</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Yttria-stabilized zirconia (YSZ) electrolytes with diverse microstructures were prepared by using nano-size (Y 2O 3) 0.08(ZrO 2) 0.92 powders as precursors through conventional sintering in air. The electrolytes were tested by AC impedance spectroscopy to elucidate the contribution of intragranular and intergranular conductivity to the total ionic conductivity. The intragranular conductivity and intergranular conductivity were correlated with the microstructures of the electrolyte to interpret the transportation of oxygen ions through the electrolyte. The intragranular conductivity was found to be dominated mainly by the relative density while the intergranular conductivity strongly depended on the grain size and grain boundary area of the electrolyte. The sintering temperature and isothermal time dependence of ionic conductivity reached a maximum value of 0.105 S/cm at a sintering temperature of 1350 °C for 4 h and 0.112 S/cm at a holding time of 8 h at 1250 °C when measured at 1000 °C, respectively. Concepts for improving the ionic conductivity of YSZ electrolyte were reviewed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0921-5093(01)01935-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2002-09, Vol.335 (1), p.246-252
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_27565065
source ScienceDirect Journals
subjects Condensed matter: structure, mechanical and thermal properties
Diffusion in solids
Exact sciences and technology
Intergranular conductivity
Intragranular conductivity
Ionic conductivity
Physics
Self-diffusion and ionic conduction in nonmetals
Transport properties of condensed matter (nonelectronic)
Yttria-stabilized zirconia electrolyte
title Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20microstructure%20on%20the%20ionic%20conductivity%20of%20yttria-stabilized%20zirconia%20electrolyte&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Chen,%20X.J&rft.date=2002-09-25&rft.volume=335&rft.issue=1&rft.spage=246&rft.epage=252&rft.pages=246-252&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/S0921-5093(01)01935-9&rft_dat=%3Cproquest_cross%3E27565065%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-a961c6b6c2495021280ce7c97b302361de5655e77ad7bcd0bba488b4dcb491b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27565065&rft_id=info:pmid/&rfr_iscdi=true