Loading…

Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft

Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the orig...

Full description

Saved in:
Bibliographic Details
Published in:The spine journal 2023-04, Vol.23 (4), p.609-620
Main Authors: Matsugaki, Aira, Ito, Manabu, Kobayashi, Yoshiya, Matsuzaka, Tadaaki, Ozasa, Ryosuke, Ishimoto, Takuya, Takahashi, Hiroyuki, Watanabe, Ryota, Inoue, Takayuki, Yokota, Katsuhiko, Nakashima, Yoshio, Kaito, Takashi, Okada, Seiji, Hanawa, Takao, Matsuyama, Yukihiro, Matsumoto, Morio, Taneichi, Hiroshi, Nakano, Takayoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3
cites cdi_FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3
container_end_page 620
container_issue 4
container_start_page 609
container_title The spine journal
container_volume 23
creator Matsugaki, Aira
Ito, Manabu
Kobayashi, Yoshiya
Matsuzaka, Tadaaki
Ozasa, Ryosuke
Ishimoto, Takuya
Takahashi, Hiroyuki
Watanabe, Ryota
Inoue, Takayuki
Yokota, Katsuhiko
Nakashima, Yoshio
Kaito, Takashi
Okada, Seiji
Hanawa, Takao
Matsuyama, Yukihiro
Matsumoto, Morio
Taneichi, Hiroshi
Nakano, Takayoshi
description Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the original function of the spine rapidly. Ordered mineralization of apatite crystals on collagen accelerates bone functionalization during the healing process. Particularly, the stable spinal function requires the ingrowth of an ordered collagen and apatite matrix which mimics the intact intervertebral microstructure. This collagen and apatite ordering is imperative for functional bone regeneration, which has not been achieved using classical autologous grafting. We developed an intervertebral body device to achieve high stability between the host bone and synthesized bone by controlling the ordered collagen and apatite microstructure. This was an in vivo animal study. Intervertebral spacers with a through-pore grooved surface structure, referred to as a honeycomb tree structure, were produced using metal 3D printing. These spacers were implanted into normal sheep at the L2–L3 or L4–L5 disc levels. As a control group, grafting autologous bone was embedded. The mechanical integrity of the spacer/bone interface was evaluated through push-out tests. The spacer with honeycomb tree structure induced anisotropic trabecular bone growth with textured collagen and apatite orientation in the through-pore and groove directions. The push-out load of the spacer was significantly higher than that of the conventional autologous graft spacer. Moreover, the load was significantly correlated with the anisotropic texture of the newly formed bone matrix. The developed intervertebral spacer guided the regenerated bone matrix orientation of collagen and apatite, resulting in greater strength at the spacer/host bone interface than that obtained using a conventional gold-standard autologous bone graft. Our results provide a foundation for designing future spacers for interbody fusion in human.
doi_str_mv 10.1016/j.spinee.2022.12.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2756669120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1529943022010701</els_id><sourcerecordid>2756669120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEoqXwBgh5ySbBdn6csEBCFdBKldjA2prY4-CrXPvWPxf1tXhCHKWw7Moj-Zs5c-ZU1VtGG0bZ8OHQxJN1iA2nnDeMN5SxZ9UlG8VYs6Hlz0vd86meupZeVK9iPFBKR8H4y-qiHfp2oh29rP7cOufPkOwZicZoF0e8IbN3SO4zrDY91AnCggk1sS5hOGNIOAdYSTyBwvCRgFK4YoANMdmpZL0r3ybHUpAlW23dQnyw6DZE-XWFBR0BpwmcinRCcrQq-JhCVikHJL9t-uVzIpCTX_3ic9xXWgKY9Lp6YWCN-Obxvap-fv3y4_qmvvv-7fb6812tejameuadGKBlI-uAd_OgNZ96IfTItOCm62A00yh6QyetuhaEUb0YjFZzy5jiSrVX1ft97in4-4wxyaONxeoKDstGkot-GIaJcVrQbkc3FzGgkadgjxAeJKNyS0se5J6W3NKSjMuSVml796iQ5yPq_03_4inApx3A4vNsMcioyhkVahtQJam9fVrhLz3orjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756669120</pqid></control><display><type>article</type><title>Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft</title><source>ScienceDirect Journals</source><creator>Matsugaki, Aira ; Ito, Manabu ; Kobayashi, Yoshiya ; Matsuzaka, Tadaaki ; Ozasa, Ryosuke ; Ishimoto, Takuya ; Takahashi, Hiroyuki ; Watanabe, Ryota ; Inoue, Takayuki ; Yokota, Katsuhiko ; Nakashima, Yoshio ; Kaito, Takashi ; Okada, Seiji ; Hanawa, Takao ; Matsuyama, Yukihiro ; Matsumoto, Morio ; Taneichi, Hiroshi ; Nakano, Takayoshi</creator><creatorcontrib>Matsugaki, Aira ; Ito, Manabu ; Kobayashi, Yoshiya ; Matsuzaka, Tadaaki ; Ozasa, Ryosuke ; Ishimoto, Takuya ; Takahashi, Hiroyuki ; Watanabe, Ryota ; Inoue, Takayuki ; Yokota, Katsuhiko ; Nakashima, Yoshio ; Kaito, Takashi ; Okada, Seiji ; Hanawa, Takao ; Matsuyama, Yukihiro ; Matsumoto, Morio ; Taneichi, Hiroshi ; Nakano, Takayoshi</creatorcontrib><description>Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the original function of the spine rapidly. Ordered mineralization of apatite crystals on collagen accelerates bone functionalization during the healing process. Particularly, the stable spinal function requires the ingrowth of an ordered collagen and apatite matrix which mimics the intact intervertebral microstructure. This collagen and apatite ordering is imperative for functional bone regeneration, which has not been achieved using classical autologous grafting. We developed an intervertebral body device to achieve high stability between the host bone and synthesized bone by controlling the ordered collagen and apatite microstructure. This was an in vivo animal study. Intervertebral spacers with a through-pore grooved surface structure, referred to as a honeycomb tree structure, were produced using metal 3D printing. These spacers were implanted into normal sheep at the L2–L3 or L4–L5 disc levels. As a control group, grafting autologous bone was embedded. The mechanical integrity of the spacer/bone interface was evaluated through push-out tests. The spacer with honeycomb tree structure induced anisotropic trabecular bone growth with textured collagen and apatite orientation in the through-pore and groove directions. The push-out load of the spacer was significantly higher than that of the conventional autologous graft spacer. Moreover, the load was significantly correlated with the anisotropic texture of the newly formed bone matrix. The developed intervertebral spacer guided the regenerated bone matrix orientation of collagen and apatite, resulting in greater strength at the spacer/host bone interface than that obtained using a conventional gold-standard autologous bone graft. Our results provide a foundation for designing future spacers for interbody fusion in human.</description><identifier>ISSN: 1529-9430</identifier><identifier>EISSN: 1878-1632</identifier><identifier>DOI: 10.1016/j.spinee.2022.12.011</identifier><identifier>PMID: 36539040</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Apatites - chemistry ; Bone quality ; Bone Transplantation - methods ; Collagen - therapeutic use ; Collagen and apatite orientation ; Humans ; Intervertebral spacer ; Lumbar Vertebrae ; Prostheses and Implants ; Push-out strength ; Sheep ; Spinal fusion ; Spinal Fusion - methods ; Spine ; Through-pore grooved surface structure</subject><ispartof>The spine journal, 2023-04, Vol.23 (4), p.609-620</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3</citedby><cites>FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3</cites><orcidid>0000-0002-3590-3555 ; 0000-0002-5107-8209 ; 0000-0001-8052-1698 ; 0000-0002-2773-072X ; 0000-0003-4882-2997 ; 0000-0001-6597-2474 ; 0000-0002-6506-3454 ; 0000-0003-2014-2922 ; 0000-0002-8427-7124 ; 0000-0002-6215-2873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36539040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsugaki, Aira</creatorcontrib><creatorcontrib>Ito, Manabu</creatorcontrib><creatorcontrib>Kobayashi, Yoshiya</creatorcontrib><creatorcontrib>Matsuzaka, Tadaaki</creatorcontrib><creatorcontrib>Ozasa, Ryosuke</creatorcontrib><creatorcontrib>Ishimoto, Takuya</creatorcontrib><creatorcontrib>Takahashi, Hiroyuki</creatorcontrib><creatorcontrib>Watanabe, Ryota</creatorcontrib><creatorcontrib>Inoue, Takayuki</creatorcontrib><creatorcontrib>Yokota, Katsuhiko</creatorcontrib><creatorcontrib>Nakashima, Yoshio</creatorcontrib><creatorcontrib>Kaito, Takashi</creatorcontrib><creatorcontrib>Okada, Seiji</creatorcontrib><creatorcontrib>Hanawa, Takao</creatorcontrib><creatorcontrib>Matsuyama, Yukihiro</creatorcontrib><creatorcontrib>Matsumoto, Morio</creatorcontrib><creatorcontrib>Taneichi, Hiroshi</creatorcontrib><creatorcontrib>Nakano, Takayoshi</creatorcontrib><title>Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft</title><title>The spine journal</title><addtitle>Spine J</addtitle><description>Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the original function of the spine rapidly. Ordered mineralization of apatite crystals on collagen accelerates bone functionalization during the healing process. Particularly, the stable spinal function requires the ingrowth of an ordered collagen and apatite matrix which mimics the intact intervertebral microstructure. This collagen and apatite ordering is imperative for functional bone regeneration, which has not been achieved using classical autologous grafting. We developed an intervertebral body device to achieve high stability between the host bone and synthesized bone by controlling the ordered collagen and apatite microstructure. This was an in vivo animal study. Intervertebral spacers with a through-pore grooved surface structure, referred to as a honeycomb tree structure, were produced using metal 3D printing. These spacers were implanted into normal sheep at the L2–L3 or L4–L5 disc levels. As a control group, grafting autologous bone was embedded. The mechanical integrity of the spacer/bone interface was evaluated through push-out tests. The spacer with honeycomb tree structure induced anisotropic trabecular bone growth with textured collagen and apatite orientation in the through-pore and groove directions. The push-out load of the spacer was significantly higher than that of the conventional autologous graft spacer. Moreover, the load was significantly correlated with the anisotropic texture of the newly formed bone matrix. The developed intervertebral spacer guided the regenerated bone matrix orientation of collagen and apatite, resulting in greater strength at the spacer/host bone interface than that obtained using a conventional gold-standard autologous bone graft. Our results provide a foundation for designing future spacers for interbody fusion in human.</description><subject>Animals</subject><subject>Apatites - chemistry</subject><subject>Bone quality</subject><subject>Bone Transplantation - methods</subject><subject>Collagen - therapeutic use</subject><subject>Collagen and apatite orientation</subject><subject>Humans</subject><subject>Intervertebral spacer</subject><subject>Lumbar Vertebrae</subject><subject>Prostheses and Implants</subject><subject>Push-out strength</subject><subject>Sheep</subject><subject>Spinal fusion</subject><subject>Spinal Fusion - methods</subject><subject>Spine</subject><subject>Through-pore grooved surface structure</subject><issn>1529-9430</issn><issn>1878-1632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSMEoqXwBgh5ySbBdn6csEBCFdBKldjA2prY4-CrXPvWPxf1tXhCHKWw7Moj-Zs5c-ZU1VtGG0bZ8OHQxJN1iA2nnDeMN5SxZ9UlG8VYs6Hlz0vd86meupZeVK9iPFBKR8H4y-qiHfp2oh29rP7cOufPkOwZicZoF0e8IbN3SO4zrDY91AnCggk1sS5hOGNIOAdYSTyBwvCRgFK4YoANMdmpZL0r3ybHUpAlW23dQnyw6DZE-XWFBR0BpwmcinRCcrQq-JhCVikHJL9t-uVzIpCTX_3ic9xXWgKY9Lp6YWCN-Obxvap-fv3y4_qmvvv-7fb6812tejameuadGKBlI-uAd_OgNZ96IfTItOCm62A00yh6QyetuhaEUb0YjFZzy5jiSrVX1ft97in4-4wxyaONxeoKDstGkot-GIaJcVrQbkc3FzGgkadgjxAeJKNyS0se5J6W3NKSjMuSVml796iQ5yPq_03_4inApx3A4vNsMcioyhkVahtQJam9fVrhLz3orjY</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Matsugaki, Aira</creator><creator>Ito, Manabu</creator><creator>Kobayashi, Yoshiya</creator><creator>Matsuzaka, Tadaaki</creator><creator>Ozasa, Ryosuke</creator><creator>Ishimoto, Takuya</creator><creator>Takahashi, Hiroyuki</creator><creator>Watanabe, Ryota</creator><creator>Inoue, Takayuki</creator><creator>Yokota, Katsuhiko</creator><creator>Nakashima, Yoshio</creator><creator>Kaito, Takashi</creator><creator>Okada, Seiji</creator><creator>Hanawa, Takao</creator><creator>Matsuyama, Yukihiro</creator><creator>Matsumoto, Morio</creator><creator>Taneichi, Hiroshi</creator><creator>Nakano, Takayoshi</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3590-3555</orcidid><orcidid>https://orcid.org/0000-0002-5107-8209</orcidid><orcidid>https://orcid.org/0000-0001-8052-1698</orcidid><orcidid>https://orcid.org/0000-0002-2773-072X</orcidid><orcidid>https://orcid.org/0000-0003-4882-2997</orcidid><orcidid>https://orcid.org/0000-0001-6597-2474</orcidid><orcidid>https://orcid.org/0000-0002-6506-3454</orcidid><orcidid>https://orcid.org/0000-0003-2014-2922</orcidid><orcidid>https://orcid.org/0000-0002-8427-7124</orcidid><orcidid>https://orcid.org/0000-0002-6215-2873</orcidid></search><sort><creationdate>202304</creationdate><title>Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft</title><author>Matsugaki, Aira ; Ito, Manabu ; Kobayashi, Yoshiya ; Matsuzaka, Tadaaki ; Ozasa, Ryosuke ; Ishimoto, Takuya ; Takahashi, Hiroyuki ; Watanabe, Ryota ; Inoue, Takayuki ; Yokota, Katsuhiko ; Nakashima, Yoshio ; Kaito, Takashi ; Okada, Seiji ; Hanawa, Takao ; Matsuyama, Yukihiro ; Matsumoto, Morio ; Taneichi, Hiroshi ; Nakano, Takayoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Apatites - chemistry</topic><topic>Bone quality</topic><topic>Bone Transplantation - methods</topic><topic>Collagen - therapeutic use</topic><topic>Collagen and apatite orientation</topic><topic>Humans</topic><topic>Intervertebral spacer</topic><topic>Lumbar Vertebrae</topic><topic>Prostheses and Implants</topic><topic>Push-out strength</topic><topic>Sheep</topic><topic>Spinal fusion</topic><topic>Spinal Fusion - methods</topic><topic>Spine</topic><topic>Through-pore grooved surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsugaki, Aira</creatorcontrib><creatorcontrib>Ito, Manabu</creatorcontrib><creatorcontrib>Kobayashi, Yoshiya</creatorcontrib><creatorcontrib>Matsuzaka, Tadaaki</creatorcontrib><creatorcontrib>Ozasa, Ryosuke</creatorcontrib><creatorcontrib>Ishimoto, Takuya</creatorcontrib><creatorcontrib>Takahashi, Hiroyuki</creatorcontrib><creatorcontrib>Watanabe, Ryota</creatorcontrib><creatorcontrib>Inoue, Takayuki</creatorcontrib><creatorcontrib>Yokota, Katsuhiko</creatorcontrib><creatorcontrib>Nakashima, Yoshio</creatorcontrib><creatorcontrib>Kaito, Takashi</creatorcontrib><creatorcontrib>Okada, Seiji</creatorcontrib><creatorcontrib>Hanawa, Takao</creatorcontrib><creatorcontrib>Matsuyama, Yukihiro</creatorcontrib><creatorcontrib>Matsumoto, Morio</creatorcontrib><creatorcontrib>Taneichi, Hiroshi</creatorcontrib><creatorcontrib>Nakano, Takayoshi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The spine journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsugaki, Aira</au><au>Ito, Manabu</au><au>Kobayashi, Yoshiya</au><au>Matsuzaka, Tadaaki</au><au>Ozasa, Ryosuke</au><au>Ishimoto, Takuya</au><au>Takahashi, Hiroyuki</au><au>Watanabe, Ryota</au><au>Inoue, Takayuki</au><au>Yokota, Katsuhiko</au><au>Nakashima, Yoshio</au><au>Kaito, Takashi</au><au>Okada, Seiji</au><au>Hanawa, Takao</au><au>Matsuyama, Yukihiro</au><au>Matsumoto, Morio</au><au>Taneichi, Hiroshi</au><au>Nakano, Takayoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft</atitle><jtitle>The spine journal</jtitle><addtitle>Spine J</addtitle><date>2023-04</date><risdate>2023</risdate><volume>23</volume><issue>4</issue><spage>609</spage><epage>620</epage><pages>609-620</pages><issn>1529-9430</issn><eissn>1878-1632</eissn><abstract>Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the original function of the spine rapidly. Ordered mineralization of apatite crystals on collagen accelerates bone functionalization during the healing process. Particularly, the stable spinal function requires the ingrowth of an ordered collagen and apatite matrix which mimics the intact intervertebral microstructure. This collagen and apatite ordering is imperative for functional bone regeneration, which has not been achieved using classical autologous grafting. We developed an intervertebral body device to achieve high stability between the host bone and synthesized bone by controlling the ordered collagen and apatite microstructure. This was an in vivo animal study. Intervertebral spacers with a through-pore grooved surface structure, referred to as a honeycomb tree structure, were produced using metal 3D printing. These spacers were implanted into normal sheep at the L2–L3 or L4–L5 disc levels. As a control group, grafting autologous bone was embedded. The mechanical integrity of the spacer/bone interface was evaluated through push-out tests. The spacer with honeycomb tree structure induced anisotropic trabecular bone growth with textured collagen and apatite orientation in the through-pore and groove directions. The push-out load of the spacer was significantly higher than that of the conventional autologous graft spacer. Moreover, the load was significantly correlated with the anisotropic texture of the newly formed bone matrix. The developed intervertebral spacer guided the regenerated bone matrix orientation of collagen and apatite, resulting in greater strength at the spacer/host bone interface than that obtained using a conventional gold-standard autologous bone graft. Our results provide a foundation for designing future spacers for interbody fusion in human.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36539040</pmid><doi>10.1016/j.spinee.2022.12.011</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3590-3555</orcidid><orcidid>https://orcid.org/0000-0002-5107-8209</orcidid><orcidid>https://orcid.org/0000-0001-8052-1698</orcidid><orcidid>https://orcid.org/0000-0002-2773-072X</orcidid><orcidid>https://orcid.org/0000-0003-4882-2997</orcidid><orcidid>https://orcid.org/0000-0001-6597-2474</orcidid><orcidid>https://orcid.org/0000-0002-6506-3454</orcidid><orcidid>https://orcid.org/0000-0003-2014-2922</orcidid><orcidid>https://orcid.org/0000-0002-8427-7124</orcidid><orcidid>https://orcid.org/0000-0002-6215-2873</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1529-9430
ispartof The spine journal, 2023-04, Vol.23 (4), p.609-620
issn 1529-9430
1878-1632
language eng
recordid cdi_proquest_miscellaneous_2756669120
source ScienceDirect Journals
subjects Animals
Apatites - chemistry
Bone quality
Bone Transplantation - methods
Collagen - therapeutic use
Collagen and apatite orientation
Humans
Intervertebral spacer
Lumbar Vertebrae
Prostheses and Implants
Push-out strength
Sheep
Spinal fusion
Spinal Fusion - methods
Spine
Through-pore grooved surface structure
title Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innovative%20design%20of%20bone%20quality-targeted%20intervertebral%20spacer:%20accelerated%20functional%20fusion%20guiding%20oriented%20collagen%20and%20apatite%20microstructure%20without%20autologous%20bone%20graft&rft.jtitle=The%20spine%20journal&rft.au=Matsugaki,%20Aira&rft.date=2023-04&rft.volume=23&rft.issue=4&rft.spage=609&rft.epage=620&rft.pages=609-620&rft.issn=1529-9430&rft.eissn=1878-1632&rft_id=info:doi/10.1016/j.spinee.2022.12.011&rft_dat=%3Cproquest_cross%3E2756669120%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756669120&rft_id=info:pmid/36539040&rfr_iscdi=true