Loading…
Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft
Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the orig...
Saved in:
Published in: | The spine journal 2023-04, Vol.23 (4), p.609-620 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3 |
container_end_page | 620 |
container_issue | 4 |
container_start_page | 609 |
container_title | The spine journal |
container_volume | 23 |
creator | Matsugaki, Aira Ito, Manabu Kobayashi, Yoshiya Matsuzaka, Tadaaki Ozasa, Ryosuke Ishimoto, Takuya Takahashi, Hiroyuki Watanabe, Ryota Inoue, Takayuki Yokota, Katsuhiko Nakashima, Yoshio Kaito, Takashi Okada, Seiji Hanawa, Takao Matsuyama, Yukihiro Matsumoto, Morio Taneichi, Hiroshi Nakano, Takayoshi |
description | Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the original function of the spine rapidly. Ordered mineralization of apatite crystals on collagen accelerates bone functionalization during the healing process. Particularly, the stable spinal function requires the ingrowth of an ordered collagen and apatite matrix which mimics the intact intervertebral microstructure. This collagen and apatite ordering is imperative for functional bone regeneration, which has not been achieved using classical autologous grafting.
We developed an intervertebral body device to achieve high stability between the host bone and synthesized bone by controlling the ordered collagen and apatite microstructure.
This was an in vivo animal study.
Intervertebral spacers with a through-pore grooved surface structure, referred to as a honeycomb tree structure, were produced using metal 3D printing. These spacers were implanted into normal sheep at the L2–L3 or L4–L5 disc levels. As a control group, grafting autologous bone was embedded. The mechanical integrity of the spacer/bone interface was evaluated through push-out tests.
The spacer with honeycomb tree structure induced anisotropic trabecular bone growth with textured collagen and apatite orientation in the through-pore and groove directions. The push-out load of the spacer was significantly higher than that of the conventional autologous graft spacer. Moreover, the load was significantly correlated with the anisotropic texture of the newly formed bone matrix.
The developed intervertebral spacer guided the regenerated bone matrix orientation of collagen and apatite, resulting in greater strength at the spacer/host bone interface than that obtained using a conventional gold-standard autologous bone graft.
Our results provide a foundation for designing future spacers for interbody fusion in human. |
doi_str_mv | 10.1016/j.spinee.2022.12.011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2756669120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1529943022010701</els_id><sourcerecordid>2756669120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEoqXwBgh5ySbBdn6csEBCFdBKldjA2prY4-CrXPvWPxf1tXhCHKWw7Moj-Zs5c-ZU1VtGG0bZ8OHQxJN1iA2nnDeMN5SxZ9UlG8VYs6Hlz0vd86meupZeVK9iPFBKR8H4y-qiHfp2oh29rP7cOufPkOwZicZoF0e8IbN3SO4zrDY91AnCggk1sS5hOGNIOAdYSTyBwvCRgFK4YoANMdmpZL0r3ybHUpAlW23dQnyw6DZE-XWFBR0BpwmcinRCcrQq-JhCVikHJL9t-uVzIpCTX_3ic9xXWgKY9Lp6YWCN-Obxvap-fv3y4_qmvvv-7fb6812tejameuadGKBlI-uAd_OgNZ96IfTItOCm62A00yh6QyetuhaEUb0YjFZzy5jiSrVX1ft97in4-4wxyaONxeoKDstGkot-GIaJcVrQbkc3FzGgkadgjxAeJKNyS0se5J6W3NKSjMuSVml796iQ5yPq_03_4inApx3A4vNsMcioyhkVahtQJam9fVrhLz3orjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756669120</pqid></control><display><type>article</type><title>Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft</title><source>ScienceDirect Journals</source><creator>Matsugaki, Aira ; Ito, Manabu ; Kobayashi, Yoshiya ; Matsuzaka, Tadaaki ; Ozasa, Ryosuke ; Ishimoto, Takuya ; Takahashi, Hiroyuki ; Watanabe, Ryota ; Inoue, Takayuki ; Yokota, Katsuhiko ; Nakashima, Yoshio ; Kaito, Takashi ; Okada, Seiji ; Hanawa, Takao ; Matsuyama, Yukihiro ; Matsumoto, Morio ; Taneichi, Hiroshi ; Nakano, Takayoshi</creator><creatorcontrib>Matsugaki, Aira ; Ito, Manabu ; Kobayashi, Yoshiya ; Matsuzaka, Tadaaki ; Ozasa, Ryosuke ; Ishimoto, Takuya ; Takahashi, Hiroyuki ; Watanabe, Ryota ; Inoue, Takayuki ; Yokota, Katsuhiko ; Nakashima, Yoshio ; Kaito, Takashi ; Okada, Seiji ; Hanawa, Takao ; Matsuyama, Yukihiro ; Matsumoto, Morio ; Taneichi, Hiroshi ; Nakano, Takayoshi</creatorcontrib><description>Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the original function of the spine rapidly. Ordered mineralization of apatite crystals on collagen accelerates bone functionalization during the healing process. Particularly, the stable spinal function requires the ingrowth of an ordered collagen and apatite matrix which mimics the intact intervertebral microstructure. This collagen and apatite ordering is imperative for functional bone regeneration, which has not been achieved using classical autologous grafting.
We developed an intervertebral body device to achieve high stability between the host bone and synthesized bone by controlling the ordered collagen and apatite microstructure.
This was an in vivo animal study.
Intervertebral spacers with a through-pore grooved surface structure, referred to as a honeycomb tree structure, were produced using metal 3D printing. These spacers were implanted into normal sheep at the L2–L3 or L4–L5 disc levels. As a control group, grafting autologous bone was embedded. The mechanical integrity of the spacer/bone interface was evaluated through push-out tests.
The spacer with honeycomb tree structure induced anisotropic trabecular bone growth with textured collagen and apatite orientation in the through-pore and groove directions. The push-out load of the spacer was significantly higher than that of the conventional autologous graft spacer. Moreover, the load was significantly correlated with the anisotropic texture of the newly formed bone matrix.
The developed intervertebral spacer guided the regenerated bone matrix orientation of collagen and apatite, resulting in greater strength at the spacer/host bone interface than that obtained using a conventional gold-standard autologous bone graft.
Our results provide a foundation for designing future spacers for interbody fusion in human.</description><identifier>ISSN: 1529-9430</identifier><identifier>EISSN: 1878-1632</identifier><identifier>DOI: 10.1016/j.spinee.2022.12.011</identifier><identifier>PMID: 36539040</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Apatites - chemistry ; Bone quality ; Bone Transplantation - methods ; Collagen - therapeutic use ; Collagen and apatite orientation ; Humans ; Intervertebral spacer ; Lumbar Vertebrae ; Prostheses and Implants ; Push-out strength ; Sheep ; Spinal fusion ; Spinal Fusion - methods ; Spine ; Through-pore grooved surface structure</subject><ispartof>The spine journal, 2023-04, Vol.23 (4), p.609-620</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3</citedby><cites>FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3</cites><orcidid>0000-0002-3590-3555 ; 0000-0002-5107-8209 ; 0000-0001-8052-1698 ; 0000-0002-2773-072X ; 0000-0003-4882-2997 ; 0000-0001-6597-2474 ; 0000-0002-6506-3454 ; 0000-0003-2014-2922 ; 0000-0002-8427-7124 ; 0000-0002-6215-2873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36539040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsugaki, Aira</creatorcontrib><creatorcontrib>Ito, Manabu</creatorcontrib><creatorcontrib>Kobayashi, Yoshiya</creatorcontrib><creatorcontrib>Matsuzaka, Tadaaki</creatorcontrib><creatorcontrib>Ozasa, Ryosuke</creatorcontrib><creatorcontrib>Ishimoto, Takuya</creatorcontrib><creatorcontrib>Takahashi, Hiroyuki</creatorcontrib><creatorcontrib>Watanabe, Ryota</creatorcontrib><creatorcontrib>Inoue, Takayuki</creatorcontrib><creatorcontrib>Yokota, Katsuhiko</creatorcontrib><creatorcontrib>Nakashima, Yoshio</creatorcontrib><creatorcontrib>Kaito, Takashi</creatorcontrib><creatorcontrib>Okada, Seiji</creatorcontrib><creatorcontrib>Hanawa, Takao</creatorcontrib><creatorcontrib>Matsuyama, Yukihiro</creatorcontrib><creatorcontrib>Matsumoto, Morio</creatorcontrib><creatorcontrib>Taneichi, Hiroshi</creatorcontrib><creatorcontrib>Nakano, Takayoshi</creatorcontrib><title>Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft</title><title>The spine journal</title><addtitle>Spine J</addtitle><description>Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the original function of the spine rapidly. Ordered mineralization of apatite crystals on collagen accelerates bone functionalization during the healing process. Particularly, the stable spinal function requires the ingrowth of an ordered collagen and apatite matrix which mimics the intact intervertebral microstructure. This collagen and apatite ordering is imperative for functional bone regeneration, which has not been achieved using classical autologous grafting.
We developed an intervertebral body device to achieve high stability between the host bone and synthesized bone by controlling the ordered collagen and apatite microstructure.
This was an in vivo animal study.
Intervertebral spacers with a through-pore grooved surface structure, referred to as a honeycomb tree structure, were produced using metal 3D printing. These spacers were implanted into normal sheep at the L2–L3 or L4–L5 disc levels. As a control group, grafting autologous bone was embedded. The mechanical integrity of the spacer/bone interface was evaluated through push-out tests.
The spacer with honeycomb tree structure induced anisotropic trabecular bone growth with textured collagen and apatite orientation in the through-pore and groove directions. The push-out load of the spacer was significantly higher than that of the conventional autologous graft spacer. Moreover, the load was significantly correlated with the anisotropic texture of the newly formed bone matrix.
The developed intervertebral spacer guided the regenerated bone matrix orientation of collagen and apatite, resulting in greater strength at the spacer/host bone interface than that obtained using a conventional gold-standard autologous bone graft.
Our results provide a foundation for designing future spacers for interbody fusion in human.</description><subject>Animals</subject><subject>Apatites - chemistry</subject><subject>Bone quality</subject><subject>Bone Transplantation - methods</subject><subject>Collagen - therapeutic use</subject><subject>Collagen and apatite orientation</subject><subject>Humans</subject><subject>Intervertebral spacer</subject><subject>Lumbar Vertebrae</subject><subject>Prostheses and Implants</subject><subject>Push-out strength</subject><subject>Sheep</subject><subject>Spinal fusion</subject><subject>Spinal Fusion - methods</subject><subject>Spine</subject><subject>Through-pore grooved surface structure</subject><issn>1529-9430</issn><issn>1878-1632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSMEoqXwBgh5ySbBdn6csEBCFdBKldjA2prY4-CrXPvWPxf1tXhCHKWw7Moj-Zs5c-ZU1VtGG0bZ8OHQxJN1iA2nnDeMN5SxZ9UlG8VYs6Hlz0vd86meupZeVK9iPFBKR8H4y-qiHfp2oh29rP7cOufPkOwZicZoF0e8IbN3SO4zrDY91AnCggk1sS5hOGNIOAdYSTyBwvCRgFK4YoANMdmpZL0r3ybHUpAlW23dQnyw6DZE-XWFBR0BpwmcinRCcrQq-JhCVikHJL9t-uVzIpCTX_3ic9xXWgKY9Lp6YWCN-Obxvap-fv3y4_qmvvv-7fb6812tejameuadGKBlI-uAd_OgNZ96IfTItOCm62A00yh6QyetuhaEUb0YjFZzy5jiSrVX1ft97in4-4wxyaONxeoKDstGkot-GIaJcVrQbkc3FzGgkadgjxAeJKNyS0se5J6W3NKSjMuSVml796iQ5yPq_03_4inApx3A4vNsMcioyhkVahtQJam9fVrhLz3orjY</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Matsugaki, Aira</creator><creator>Ito, Manabu</creator><creator>Kobayashi, Yoshiya</creator><creator>Matsuzaka, Tadaaki</creator><creator>Ozasa, Ryosuke</creator><creator>Ishimoto, Takuya</creator><creator>Takahashi, Hiroyuki</creator><creator>Watanabe, Ryota</creator><creator>Inoue, Takayuki</creator><creator>Yokota, Katsuhiko</creator><creator>Nakashima, Yoshio</creator><creator>Kaito, Takashi</creator><creator>Okada, Seiji</creator><creator>Hanawa, Takao</creator><creator>Matsuyama, Yukihiro</creator><creator>Matsumoto, Morio</creator><creator>Taneichi, Hiroshi</creator><creator>Nakano, Takayoshi</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3590-3555</orcidid><orcidid>https://orcid.org/0000-0002-5107-8209</orcidid><orcidid>https://orcid.org/0000-0001-8052-1698</orcidid><orcidid>https://orcid.org/0000-0002-2773-072X</orcidid><orcidid>https://orcid.org/0000-0003-4882-2997</orcidid><orcidid>https://orcid.org/0000-0001-6597-2474</orcidid><orcidid>https://orcid.org/0000-0002-6506-3454</orcidid><orcidid>https://orcid.org/0000-0003-2014-2922</orcidid><orcidid>https://orcid.org/0000-0002-8427-7124</orcidid><orcidid>https://orcid.org/0000-0002-6215-2873</orcidid></search><sort><creationdate>202304</creationdate><title>Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft</title><author>Matsugaki, Aira ; Ito, Manabu ; Kobayashi, Yoshiya ; Matsuzaka, Tadaaki ; Ozasa, Ryosuke ; Ishimoto, Takuya ; Takahashi, Hiroyuki ; Watanabe, Ryota ; Inoue, Takayuki ; Yokota, Katsuhiko ; Nakashima, Yoshio ; Kaito, Takashi ; Okada, Seiji ; Hanawa, Takao ; Matsuyama, Yukihiro ; Matsumoto, Morio ; Taneichi, Hiroshi ; Nakano, Takayoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Apatites - chemistry</topic><topic>Bone quality</topic><topic>Bone Transplantation - methods</topic><topic>Collagen - therapeutic use</topic><topic>Collagen and apatite orientation</topic><topic>Humans</topic><topic>Intervertebral spacer</topic><topic>Lumbar Vertebrae</topic><topic>Prostheses and Implants</topic><topic>Push-out strength</topic><topic>Sheep</topic><topic>Spinal fusion</topic><topic>Spinal Fusion - methods</topic><topic>Spine</topic><topic>Through-pore grooved surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsugaki, Aira</creatorcontrib><creatorcontrib>Ito, Manabu</creatorcontrib><creatorcontrib>Kobayashi, Yoshiya</creatorcontrib><creatorcontrib>Matsuzaka, Tadaaki</creatorcontrib><creatorcontrib>Ozasa, Ryosuke</creatorcontrib><creatorcontrib>Ishimoto, Takuya</creatorcontrib><creatorcontrib>Takahashi, Hiroyuki</creatorcontrib><creatorcontrib>Watanabe, Ryota</creatorcontrib><creatorcontrib>Inoue, Takayuki</creatorcontrib><creatorcontrib>Yokota, Katsuhiko</creatorcontrib><creatorcontrib>Nakashima, Yoshio</creatorcontrib><creatorcontrib>Kaito, Takashi</creatorcontrib><creatorcontrib>Okada, Seiji</creatorcontrib><creatorcontrib>Hanawa, Takao</creatorcontrib><creatorcontrib>Matsuyama, Yukihiro</creatorcontrib><creatorcontrib>Matsumoto, Morio</creatorcontrib><creatorcontrib>Taneichi, Hiroshi</creatorcontrib><creatorcontrib>Nakano, Takayoshi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The spine journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsugaki, Aira</au><au>Ito, Manabu</au><au>Kobayashi, Yoshiya</au><au>Matsuzaka, Tadaaki</au><au>Ozasa, Ryosuke</au><au>Ishimoto, Takuya</au><au>Takahashi, Hiroyuki</au><au>Watanabe, Ryota</au><au>Inoue, Takayuki</au><au>Yokota, Katsuhiko</au><au>Nakashima, Yoshio</au><au>Kaito, Takashi</au><au>Okada, Seiji</au><au>Hanawa, Takao</au><au>Matsuyama, Yukihiro</au><au>Matsumoto, Morio</au><au>Taneichi, Hiroshi</au><au>Nakano, Takayoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft</atitle><jtitle>The spine journal</jtitle><addtitle>Spine J</addtitle><date>2023-04</date><risdate>2023</risdate><volume>23</volume><issue>4</issue><spage>609</spage><epage>620</epage><pages>609-620</pages><issn>1529-9430</issn><eissn>1878-1632</eissn><abstract>Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the original function of the spine rapidly. Ordered mineralization of apatite crystals on collagen accelerates bone functionalization during the healing process. Particularly, the stable spinal function requires the ingrowth of an ordered collagen and apatite matrix which mimics the intact intervertebral microstructure. This collagen and apatite ordering is imperative for functional bone regeneration, which has not been achieved using classical autologous grafting.
We developed an intervertebral body device to achieve high stability between the host bone and synthesized bone by controlling the ordered collagen and apatite microstructure.
This was an in vivo animal study.
Intervertebral spacers with a through-pore grooved surface structure, referred to as a honeycomb tree structure, were produced using metal 3D printing. These spacers were implanted into normal sheep at the L2–L3 or L4–L5 disc levels. As a control group, grafting autologous bone was embedded. The mechanical integrity of the spacer/bone interface was evaluated through push-out tests.
The spacer with honeycomb tree structure induced anisotropic trabecular bone growth with textured collagen and apatite orientation in the through-pore and groove directions. The push-out load of the spacer was significantly higher than that of the conventional autologous graft spacer. Moreover, the load was significantly correlated with the anisotropic texture of the newly formed bone matrix.
The developed intervertebral spacer guided the regenerated bone matrix orientation of collagen and apatite, resulting in greater strength at the spacer/host bone interface than that obtained using a conventional gold-standard autologous bone graft.
Our results provide a foundation for designing future spacers for interbody fusion in human.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36539040</pmid><doi>10.1016/j.spinee.2022.12.011</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3590-3555</orcidid><orcidid>https://orcid.org/0000-0002-5107-8209</orcidid><orcidid>https://orcid.org/0000-0001-8052-1698</orcidid><orcidid>https://orcid.org/0000-0002-2773-072X</orcidid><orcidid>https://orcid.org/0000-0003-4882-2997</orcidid><orcidid>https://orcid.org/0000-0001-6597-2474</orcidid><orcidid>https://orcid.org/0000-0002-6506-3454</orcidid><orcidid>https://orcid.org/0000-0003-2014-2922</orcidid><orcidid>https://orcid.org/0000-0002-8427-7124</orcidid><orcidid>https://orcid.org/0000-0002-6215-2873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1529-9430 |
ispartof | The spine journal, 2023-04, Vol.23 (4), p.609-620 |
issn | 1529-9430 1878-1632 |
language | eng |
recordid | cdi_proquest_miscellaneous_2756669120 |
source | ScienceDirect Journals |
subjects | Animals Apatites - chemistry Bone quality Bone Transplantation - methods Collagen - therapeutic use Collagen and apatite orientation Humans Intervertebral spacer Lumbar Vertebrae Prostheses and Implants Push-out strength Sheep Spinal fusion Spinal Fusion - methods Spine Through-pore grooved surface structure |
title | Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innovative%20design%20of%20bone%20quality-targeted%20intervertebral%20spacer:%20accelerated%20functional%20fusion%20guiding%20oriented%20collagen%20and%20apatite%20microstructure%20without%20autologous%20bone%20graft&rft.jtitle=The%20spine%20journal&rft.au=Matsugaki,%20Aira&rft.date=2023-04&rft.volume=23&rft.issue=4&rft.spage=609&rft.epage=620&rft.pages=609-620&rft.issn=1529-9430&rft.eissn=1878-1632&rft_id=info:doi/10.1016/j.spinee.2022.12.011&rft_dat=%3Cproquest_cross%3E2756669120%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-b2476a31814a24b6dd29577d81d72f44a8f9875f09dc43a7fc576fdcb311c2cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756669120&rft_id=info:pmid/36539040&rfr_iscdi=true |