Loading…

Statistical considerations for assessing precision of heterogeneous duplicate measurements: An application to pharmaceutical bioanalysis

Duplicate analysis is a strategy commonly used to assess precision of bioanalytical methods. In some cases, duplicate analysis may rely on pooling data generated across organizations. Despite being generated under comparable conditions, organizations may produce duplicate measurements with different...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutical statistics : the journal of the pharmaceutical industry 2023-05, Vol.22 (3), p.461-474
Main Authors: Quiroz, Jorge, Roychoudhury, Satrajit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3102-b98ee312c4b87ce9a666d0f3273ccc0d7fbc5041cae10d40579628168d10875a3
container_end_page 474
container_issue 3
container_start_page 461
container_title Pharmaceutical statistics : the journal of the pharmaceutical industry
container_volume 22
creator Quiroz, Jorge
Roychoudhury, Satrajit
description Duplicate analysis is a strategy commonly used to assess precision of bioanalytical methods. In some cases, duplicate analysis may rely on pooling data generated across organizations. Despite being generated under comparable conditions, organizations may produce duplicate measurements with different precision. Thus, these pooled data consist of a heterogeneous collection of duplicate measurements. Precision estimates are often expressed as relative difference indexes (RDI), such as relative percentage difference (RPD). Empirical evidence indicates that the frequency distribution of RDI values from heterogeneous data exhibits sharper peaks and heavier tails than normal distributions. Therefore, traditional normal‐based models may yield faulty or unreliable estimates of precision from heterogeneous duplicate data. In this paper, we survey application of the mixture models that satisfactorily represent the distribution of RDI values from heterogeneous duplicate data. A simulation study was conducted to compare the performance of the different models in providing reliable estimates and inferences of percentile calculated from RDI values. These models are readily accessible to practitioners for study implementation through the use of modern statistical software. The utility of mixture models are explained in detail using a numerical example.
doi_str_mv 10.1002/pst.2282
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2756669748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813482327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3102-b98ee312c4b87ce9a666d0f3273ccc0d7fbc5041cae10d40579628168d10875a3</originalsourceid><addsrcrecordid>eNp1kctKxTAQhoMo3sEnkIAbN9UkvSR1J-INBAWP65KmU420Tc2kyHkDH9scz_EsBFcZMl--mfATcsTZGWdMnI8YzoRQYoPs8jwtE15wsbmuWbZD9hDfGeNSlfk22UmLPOMy47vk6znoYDFYoztq3IC2AR9vYkVb56lGBEQ7vNLRg7EYG9S19A0CePcKA7gJaTONXRQEoD1onDz0MAS8oJcD1eOytXgXHB3ftO-1gWk5sLZOD7qbo8UDstXqDuFwde6Tl5vr2dVd8vB4e391-ZCYlDOR1KUCSLkwWa2kgVIXRdGwNhUyNcawRra1yVnGjQbOmozlsiyE4oVqOFMy1-k-OV16R-8-JsBQ9RYNdJ3--UslZB6VpcxURE_-oO9u8nHfSCmeZkosxq6FxjtED201ettrP684qxbpVDGdapFORI9XwqnuoVmDv3FEIFkCn7aD-b-i6ul59iP8Bskpm_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813482327</pqid></control><display><type>article</type><title>Statistical considerations for assessing precision of heterogeneous duplicate measurements: An application to pharmaceutical bioanalysis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Quiroz, Jorge ; Roychoudhury, Satrajit</creator><creatorcontrib>Quiroz, Jorge ; Roychoudhury, Satrajit</creatorcontrib><description>Duplicate analysis is a strategy commonly used to assess precision of bioanalytical methods. In some cases, duplicate analysis may rely on pooling data generated across organizations. Despite being generated under comparable conditions, organizations may produce duplicate measurements with different precision. Thus, these pooled data consist of a heterogeneous collection of duplicate measurements. Precision estimates are often expressed as relative difference indexes (RDI), such as relative percentage difference (RPD). Empirical evidence indicates that the frequency distribution of RDI values from heterogeneous data exhibits sharper peaks and heavier tails than normal distributions. Therefore, traditional normal‐based models may yield faulty or unreliable estimates of precision from heterogeneous duplicate data. In this paper, we survey application of the mixture models that satisfactorily represent the distribution of RDI values from heterogeneous duplicate data. A simulation study was conducted to compare the performance of the different models in providing reliable estimates and inferences of percentile calculated from RDI values. These models are readily accessible to practitioners for study implementation through the use of modern statistical software. The utility of mixture models are explained in detail using a numerical example.</description><identifier>ISSN: 1539-1604</identifier><identifier>EISSN: 1539-1612</identifier><identifier>DOI: 10.1002/pst.2282</identifier><identifier>PMID: 36541741</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Bland–Altman analysis ; Computer Simulation ; Gaussian mixture models ; heterogeneous duplicates data ; Humans ; Normal Distribution ; normal‐variance mixture models ; Pharmaceutical Preparations ; Pharmaceuticals ; relative difference index ; Software ; Statistical analysis</subject><ispartof>Pharmaceutical statistics : the journal of the pharmaceutical industry, 2023-05, Vol.22 (3), p.461-474</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3102-b98ee312c4b87ce9a666d0f3273ccc0d7fbc5041cae10d40579628168d10875a3</cites><orcidid>0000-0003-1956-8416 ; 0000-0003-4001-3036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36541741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quiroz, Jorge</creatorcontrib><creatorcontrib>Roychoudhury, Satrajit</creatorcontrib><title>Statistical considerations for assessing precision of heterogeneous duplicate measurements: An application to pharmaceutical bioanalysis</title><title>Pharmaceutical statistics : the journal of the pharmaceutical industry</title><addtitle>Pharm Stat</addtitle><description>Duplicate analysis is a strategy commonly used to assess precision of bioanalytical methods. In some cases, duplicate analysis may rely on pooling data generated across organizations. Despite being generated under comparable conditions, organizations may produce duplicate measurements with different precision. Thus, these pooled data consist of a heterogeneous collection of duplicate measurements. Precision estimates are often expressed as relative difference indexes (RDI), such as relative percentage difference (RPD). Empirical evidence indicates that the frequency distribution of RDI values from heterogeneous data exhibits sharper peaks and heavier tails than normal distributions. Therefore, traditional normal‐based models may yield faulty or unreliable estimates of precision from heterogeneous duplicate data. In this paper, we survey application of the mixture models that satisfactorily represent the distribution of RDI values from heterogeneous duplicate data. A simulation study was conducted to compare the performance of the different models in providing reliable estimates and inferences of percentile calculated from RDI values. These models are readily accessible to practitioners for study implementation through the use of modern statistical software. The utility of mixture models are explained in detail using a numerical example.</description><subject>Bland–Altman analysis</subject><subject>Computer Simulation</subject><subject>Gaussian mixture models</subject><subject>heterogeneous duplicates data</subject><subject>Humans</subject><subject>Normal Distribution</subject><subject>normal‐variance mixture models</subject><subject>Pharmaceutical Preparations</subject><subject>Pharmaceuticals</subject><subject>relative difference index</subject><subject>Software</subject><subject>Statistical analysis</subject><issn>1539-1604</issn><issn>1539-1612</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kctKxTAQhoMo3sEnkIAbN9UkvSR1J-INBAWP65KmU420Tc2kyHkDH9scz_EsBFcZMl--mfATcsTZGWdMnI8YzoRQYoPs8jwtE15wsbmuWbZD9hDfGeNSlfk22UmLPOMy47vk6znoYDFYoztq3IC2AR9vYkVb56lGBEQ7vNLRg7EYG9S19A0CePcKA7gJaTONXRQEoD1onDz0MAS8oJcD1eOytXgXHB3ftO-1gWk5sLZOD7qbo8UDstXqDuFwde6Tl5vr2dVd8vB4e391-ZCYlDOR1KUCSLkwWa2kgVIXRdGwNhUyNcawRra1yVnGjQbOmozlsiyE4oVqOFMy1-k-OV16R-8-JsBQ9RYNdJ3--UslZB6VpcxURE_-oO9u8nHfSCmeZkosxq6FxjtED201ettrP684qxbpVDGdapFORI9XwqnuoVmDv3FEIFkCn7aD-b-i6ul59iP8Bskpm_c</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Quiroz, Jorge</creator><creator>Roychoudhury, Satrajit</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1956-8416</orcidid><orcidid>https://orcid.org/0000-0003-4001-3036</orcidid></search><sort><creationdate>202305</creationdate><title>Statistical considerations for assessing precision of heterogeneous duplicate measurements: An application to pharmaceutical bioanalysis</title><author>Quiroz, Jorge ; Roychoudhury, Satrajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3102-b98ee312c4b87ce9a666d0f3273ccc0d7fbc5041cae10d40579628168d10875a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bland–Altman analysis</topic><topic>Computer Simulation</topic><topic>Gaussian mixture models</topic><topic>heterogeneous duplicates data</topic><topic>Humans</topic><topic>Normal Distribution</topic><topic>normal‐variance mixture models</topic><topic>Pharmaceutical Preparations</topic><topic>Pharmaceuticals</topic><topic>relative difference index</topic><topic>Software</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quiroz, Jorge</creatorcontrib><creatorcontrib>Roychoudhury, Satrajit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmaceutical statistics : the journal of the pharmaceutical industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quiroz, Jorge</au><au>Roychoudhury, Satrajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical considerations for assessing precision of heterogeneous duplicate measurements: An application to pharmaceutical bioanalysis</atitle><jtitle>Pharmaceutical statistics : the journal of the pharmaceutical industry</jtitle><addtitle>Pharm Stat</addtitle><date>2023-05</date><risdate>2023</risdate><volume>22</volume><issue>3</issue><spage>461</spage><epage>474</epage><pages>461-474</pages><issn>1539-1604</issn><eissn>1539-1612</eissn><abstract>Duplicate analysis is a strategy commonly used to assess precision of bioanalytical methods. In some cases, duplicate analysis may rely on pooling data generated across organizations. Despite being generated under comparable conditions, organizations may produce duplicate measurements with different precision. Thus, these pooled data consist of a heterogeneous collection of duplicate measurements. Precision estimates are often expressed as relative difference indexes (RDI), such as relative percentage difference (RPD). Empirical evidence indicates that the frequency distribution of RDI values from heterogeneous data exhibits sharper peaks and heavier tails than normal distributions. Therefore, traditional normal‐based models may yield faulty or unreliable estimates of precision from heterogeneous duplicate data. In this paper, we survey application of the mixture models that satisfactorily represent the distribution of RDI values from heterogeneous duplicate data. A simulation study was conducted to compare the performance of the different models in providing reliable estimates and inferences of percentile calculated from RDI values. These models are readily accessible to practitioners for study implementation through the use of modern statistical software. The utility of mixture models are explained in detail using a numerical example.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36541741</pmid><doi>10.1002/pst.2282</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1956-8416</orcidid><orcidid>https://orcid.org/0000-0003-4001-3036</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1539-1604
ispartof Pharmaceutical statistics : the journal of the pharmaceutical industry, 2023-05, Vol.22 (3), p.461-474
issn 1539-1604
1539-1612
language eng
recordid cdi_proquest_miscellaneous_2756669748
source Wiley-Blackwell Read & Publish Collection
subjects Bland–Altman analysis
Computer Simulation
Gaussian mixture models
heterogeneous duplicates data
Humans
Normal Distribution
normal‐variance mixture models
Pharmaceutical Preparations
Pharmaceuticals
relative difference index
Software
Statistical analysis
title Statistical considerations for assessing precision of heterogeneous duplicate measurements: An application to pharmaceutical bioanalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20considerations%20for%20assessing%20precision%20of%20heterogeneous%20duplicate%20measurements:%20An%20application%20to%20pharmaceutical%20bioanalysis&rft.jtitle=Pharmaceutical%20statistics%20:%20the%20journal%20of%20the%20pharmaceutical%20industry&rft.au=Quiroz,%20Jorge&rft.date=2023-05&rft.volume=22&rft.issue=3&rft.spage=461&rft.epage=474&rft.pages=461-474&rft.issn=1539-1604&rft.eissn=1539-1612&rft_id=info:doi/10.1002/pst.2282&rft_dat=%3Cproquest_cross%3E2813482327%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3102-b98ee312c4b87ce9a666d0f3273ccc0d7fbc5041cae10d40579628168d10875a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2813482327&rft_id=info:pmid/36541741&rfr_iscdi=true