Loading…
Model for Dynamic Analysis of Wood Frame Shear Walls
A discrete three-degree-of-freedom model of a wood frame shear wall has been developed that is suitable for design-type analyses. The model captures the salient features of the wall response, is amenable to exact closed-form solution, and has the flexibility to account for variations in wall geometr...
Saved in:
Published in: | Journal of engineering mechanics 2000-09, Vol.126 (9), p.899-908 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A discrete three-degree-of-freedom model of a wood frame shear wall has been developed that is suitable for design-type analyses. The model captures the salient features of the wall response, is amenable to exact closed-form solution, and has the flexibility to account for variations in wall geometry, framing and sheathing materials, fastener type, and spacing. Sheathing-to-stud connections are modeled using a linear viscoelastic element; a method is presented for determining the connection properties using the results of full-scale shear wall tests and a closed-form solution for the test excitation. Results show that the model accurately predicts the hysteretic behavior of the wall for low to moderate displacements; at larger displacements the linear model captures the overall behavior (effective stiffness and energy dissipation), but, as would be expected, fails to predict the pinched hysteresis observed in the tests. Finally, a response spectrum analysis is conducted of a single-story wood frame structure to demonstrate how the model can be used for design-type analyses. |
---|---|
ISSN: | 0733-9399 1943-7889 |
DOI: | 10.1061/(ASCE)0733-9399(2000)126:9(899) |