Loading…

Circulating Marangoni flows within droplets in smectic films

We present a theoretical study and numerical simulation of Marangoni convection within ellipsoidal isotropic droplets embedded in free-standing smectic films (FSSFs). The thermocapillary flows are analyzed for both isotropic droplets spontaneously formed in FSSF overheated above the bulk smectic-iso...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2022-11, Vol.106 (5-2), p.055105-055105, Article 055105
Main Authors: Pikina, E S, Shishkin, M A, Kolegov, K S, Ostrovskii, B I, Pikin, S A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c305t-59486355ab60f7c656b995f84c390d359db995424bcb06d707827cbb4a354d3d3
cites cdi_FETCH-LOGICAL-c305t-59486355ab60f7c656b995f84c390d359db995424bcb06d707827cbb4a354d3d3
container_end_page 055105
container_issue 5-2
container_start_page 055105
container_title Physical review. E
container_volume 106
creator Pikina, E S
Shishkin, M A
Kolegov, K S
Ostrovskii, B I
Pikin, S A
description We present a theoretical study and numerical simulation of Marangoni convection within ellipsoidal isotropic droplets embedded in free-standing smectic films (FSSFs). The thermocapillary flows are analyzed for both isotropic droplets spontaneously formed in FSSF overheated above the bulk smectic-isotropic transition and oil lenses deposited on the surface of the smectic film. The realistic model for which the upper drop interface is free from the smectic layers, while at the lower drop surface the smectic layering persists is considered in detail. For isotropic droplets and oil lenses this leads effectively to a sticking of fluid motion at the border with a smectic shell. The above mentioned asymmetric configuration is realized experimentally when the temperature of the upper side of the film is higher than at the lower one. The full set of stationary solutions for Stokes stream functions describing the Marangoni convection flows within the ellipsoidal drops are derived analytically. The temperature distribution in the ellipsoidal drop and the surrounding air is determined in the frame of the perturbation theory. As a result, the analytical solutions for the stationary thermocapillary convection are obtained for different droplet ellipticity ratios and the heat conductivity of the liquid crystal and air. In parallel, the numerical hydrodynamic calculations of the thermocapillary motion in drops are made. Both analytical and numerical simulations predict the axially symmetric circulatory convection motion determined by the Marangoni effect at the droplet-free surface. Due to a curvature of the drop interface a temperature gradient along its free surface always exists. Thus, the thermocapillary convection within the ellipsoidal droplets in overheated FSSF is possible for the arbitrarily small Marangoni numbers. Possible experimental observations enabling the checking of our predictions are proposed.
doi_str_mv 10.1103/PhysRevE.106.055105
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758103389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758103389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-59486355ab60f7c656b995f84c390d359db995424bcb06d707827cbb4a354d3d3</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMobsz9BYL00ZfOmyY3bcAXGfMDJoroc0jTdIv0YyatY_-9HZt7uudezrkHfoRcU5hRCuzufb0LH_Z3MaMgZoBIAc_IOOEpxADIzk-a44hMQ_gGACpApjS5JCMmECUTYkzu586bvtKda1bRq_a6WbWNi8qq3YZo67q1a6LCt5vKdiEadKit6ZyJSlfV4YpclLoKdnqcE_L1uPicP8fLt6eX-cMyNgywi1HyTDBEnQsoUyNQ5FJimXHDJBQMZbHfecJzk4MoUkizJDV5zjVDXrCCTcjt4e_Gtz-9DZ2qXTC2qnRj2z6oJMVsgMIyOVjZwWp8G4K3pdp4V2u_UxTUnpz6JzcchDqQG1I3x4I-r21xyvxzYn9Vs2od</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758103389</pqid></control><display><type>article</type><title>Circulating Marangoni flows within droplets in smectic films</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Pikina, E S ; Shishkin, M A ; Kolegov, K S ; Ostrovskii, B I ; Pikin, S A</creator><creatorcontrib>Pikina, E S ; Shishkin, M A ; Kolegov, K S ; Ostrovskii, B I ; Pikin, S A</creatorcontrib><description>We present a theoretical study and numerical simulation of Marangoni convection within ellipsoidal isotropic droplets embedded in free-standing smectic films (FSSFs). The thermocapillary flows are analyzed for both isotropic droplets spontaneously formed in FSSF overheated above the bulk smectic-isotropic transition and oil lenses deposited on the surface of the smectic film. The realistic model for which the upper drop interface is free from the smectic layers, while at the lower drop surface the smectic layering persists is considered in detail. For isotropic droplets and oil lenses this leads effectively to a sticking of fluid motion at the border with a smectic shell. The above mentioned asymmetric configuration is realized experimentally when the temperature of the upper side of the film is higher than at the lower one. The full set of stationary solutions for Stokes stream functions describing the Marangoni convection flows within the ellipsoidal drops are derived analytically. The temperature distribution in the ellipsoidal drop and the surrounding air is determined in the frame of the perturbation theory. As a result, the analytical solutions for the stationary thermocapillary convection are obtained for different droplet ellipticity ratios and the heat conductivity of the liquid crystal and air. In parallel, the numerical hydrodynamic calculations of the thermocapillary motion in drops are made. Both analytical and numerical simulations predict the axially symmetric circulatory convection motion determined by the Marangoni effect at the droplet-free surface. Due to a curvature of the drop interface a temperature gradient along its free surface always exists. Thus, the thermocapillary convection within the ellipsoidal droplets in overheated FSSF is possible for the arbitrarily small Marangoni numbers. Possible experimental observations enabling the checking of our predictions are proposed.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.106.055105</identifier><identifier>PMID: 36559366</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2022-11, Vol.106 (5-2), p.055105-055105, Article 055105</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-59486355ab60f7c656b995f84c390d359db995424bcb06d707827cbb4a354d3d3</citedby><cites>FETCH-LOGICAL-c305t-59486355ab60f7c656b995f84c390d359db995424bcb06d707827cbb4a354d3d3</cites><orcidid>0000-0002-1243-5285 ; 0000-0002-3496-6116 ; 0000-0002-9742-1308 ; 0000-0002-3359-754X ; 0000-0003-1992-4468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36559366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pikina, E S</creatorcontrib><creatorcontrib>Shishkin, M A</creatorcontrib><creatorcontrib>Kolegov, K S</creatorcontrib><creatorcontrib>Ostrovskii, B I</creatorcontrib><creatorcontrib>Pikin, S A</creatorcontrib><title>Circulating Marangoni flows within droplets in smectic films</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We present a theoretical study and numerical simulation of Marangoni convection within ellipsoidal isotropic droplets embedded in free-standing smectic films (FSSFs). The thermocapillary flows are analyzed for both isotropic droplets spontaneously formed in FSSF overheated above the bulk smectic-isotropic transition and oil lenses deposited on the surface of the smectic film. The realistic model for which the upper drop interface is free from the smectic layers, while at the lower drop surface the smectic layering persists is considered in detail. For isotropic droplets and oil lenses this leads effectively to a sticking of fluid motion at the border with a smectic shell. The above mentioned asymmetric configuration is realized experimentally when the temperature of the upper side of the film is higher than at the lower one. The full set of stationary solutions for Stokes stream functions describing the Marangoni convection flows within the ellipsoidal drops are derived analytically. The temperature distribution in the ellipsoidal drop and the surrounding air is determined in the frame of the perturbation theory. As a result, the analytical solutions for the stationary thermocapillary convection are obtained for different droplet ellipticity ratios and the heat conductivity of the liquid crystal and air. In parallel, the numerical hydrodynamic calculations of the thermocapillary motion in drops are made. Both analytical and numerical simulations predict the axially symmetric circulatory convection motion determined by the Marangoni effect at the droplet-free surface. Due to a curvature of the drop interface a temperature gradient along its free surface always exists. Thus, the thermocapillary convection within the ellipsoidal droplets in overheated FSSF is possible for the arbitrarily small Marangoni numbers. Possible experimental observations enabling the checking of our predictions are proposed.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMobsz9BYL00ZfOmyY3bcAXGfMDJoroc0jTdIv0YyatY_-9HZt7uudezrkHfoRcU5hRCuzufb0LH_Z3MaMgZoBIAc_IOOEpxADIzk-a44hMQ_gGACpApjS5JCMmECUTYkzu586bvtKda1bRq_a6WbWNi8qq3YZo67q1a6LCt5vKdiEadKit6ZyJSlfV4YpclLoKdnqcE_L1uPicP8fLt6eX-cMyNgywi1HyTDBEnQsoUyNQ5FJimXHDJBQMZbHfecJzk4MoUkizJDV5zjVDXrCCTcjt4e_Gtz-9DZ2qXTC2qnRj2z6oJMVsgMIyOVjZwWp8G4K3pdp4V2u_UxTUnpz6JzcchDqQG1I3x4I-r21xyvxzYn9Vs2od</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Pikina, E S</creator><creator>Shishkin, M A</creator><creator>Kolegov, K S</creator><creator>Ostrovskii, B I</creator><creator>Pikin, S A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1243-5285</orcidid><orcidid>https://orcid.org/0000-0002-3496-6116</orcidid><orcidid>https://orcid.org/0000-0002-9742-1308</orcidid><orcidid>https://orcid.org/0000-0002-3359-754X</orcidid><orcidid>https://orcid.org/0000-0003-1992-4468</orcidid></search><sort><creationdate>20221101</creationdate><title>Circulating Marangoni flows within droplets in smectic films</title><author>Pikina, E S ; Shishkin, M A ; Kolegov, K S ; Ostrovskii, B I ; Pikin, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-59486355ab60f7c656b995f84c390d359db995424bcb06d707827cbb4a354d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pikina, E S</creatorcontrib><creatorcontrib>Shishkin, M A</creatorcontrib><creatorcontrib>Kolegov, K S</creatorcontrib><creatorcontrib>Ostrovskii, B I</creatorcontrib><creatorcontrib>Pikin, S A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pikina, E S</au><au>Shishkin, M A</au><au>Kolegov, K S</au><au>Ostrovskii, B I</au><au>Pikin, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circulating Marangoni flows within droplets in smectic films</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>106</volume><issue>5-2</issue><spage>055105</spage><epage>055105</epage><pages>055105-055105</pages><artnum>055105</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We present a theoretical study and numerical simulation of Marangoni convection within ellipsoidal isotropic droplets embedded in free-standing smectic films (FSSFs). The thermocapillary flows are analyzed for both isotropic droplets spontaneously formed in FSSF overheated above the bulk smectic-isotropic transition and oil lenses deposited on the surface of the smectic film. The realistic model for which the upper drop interface is free from the smectic layers, while at the lower drop surface the smectic layering persists is considered in detail. For isotropic droplets and oil lenses this leads effectively to a sticking of fluid motion at the border with a smectic shell. The above mentioned asymmetric configuration is realized experimentally when the temperature of the upper side of the film is higher than at the lower one. The full set of stationary solutions for Stokes stream functions describing the Marangoni convection flows within the ellipsoidal drops are derived analytically. The temperature distribution in the ellipsoidal drop and the surrounding air is determined in the frame of the perturbation theory. As a result, the analytical solutions for the stationary thermocapillary convection are obtained for different droplet ellipticity ratios and the heat conductivity of the liquid crystal and air. In parallel, the numerical hydrodynamic calculations of the thermocapillary motion in drops are made. Both analytical and numerical simulations predict the axially symmetric circulatory convection motion determined by the Marangoni effect at the droplet-free surface. Due to a curvature of the drop interface a temperature gradient along its free surface always exists. Thus, the thermocapillary convection within the ellipsoidal droplets in overheated FSSF is possible for the arbitrarily small Marangoni numbers. Possible experimental observations enabling the checking of our predictions are proposed.</abstract><cop>United States</cop><pmid>36559366</pmid><doi>10.1103/PhysRevE.106.055105</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1243-5285</orcidid><orcidid>https://orcid.org/0000-0002-3496-6116</orcidid><orcidid>https://orcid.org/0000-0002-9742-1308</orcidid><orcidid>https://orcid.org/0000-0002-3359-754X</orcidid><orcidid>https://orcid.org/0000-0003-1992-4468</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2022-11, Vol.106 (5-2), p.055105-055105, Article 055105
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2758103389
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Circulating Marangoni flows within droplets in smectic films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circulating%20Marangoni%20flows%20within%20droplets%20in%20smectic%20films&rft.jtitle=Physical%20review.%20E&rft.au=Pikina,%20E%20S&rft.date=2022-11-01&rft.volume=106&rft.issue=5-2&rft.spage=055105&rft.epage=055105&rft.pages=055105-055105&rft.artnum=055105&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.106.055105&rft_dat=%3Cproquest_cross%3E2758103389%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-59486355ab60f7c656b995f84c390d359db995424bcb06d707827cbb4a354d3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2758103389&rft_id=info:pmid/36559366&rfr_iscdi=true