Loading…

Delphinieae flowers originated from the rewiring of interactions between duplicated and diversified floral organ identity and symmetry genes

Abstract Species of the tribe Delphinieae (Ranunculaceae) have long been the focus of morphological, ecological, and evolutionary studies due to their highly specialized, nearly zygomorphic (bilaterally symmetrical) spiral flowers with nested petal and sepal spurs and reduced petals. The mechanisms...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 2023-03, Vol.35 (3), p.994-1012
Main Authors: Zhao, Huiqi, Liao, Hong, Li, Shuixian, Zhang, Rui, Dai, Jing, Ma, Pengrui, Wang, Tianpeng, Wang, Meimei, Yuan, Yi, Fu, Xuehao, Cheng, Jie, Duan, Xiaoshan, Xie, Yanru, Zhang, Peng, Kong, Hongzhi, Shan, Hongyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Species of the tribe Delphinieae (Ranunculaceae) have long been the focus of morphological, ecological, and evolutionary studies due to their highly specialized, nearly zygomorphic (bilaterally symmetrical) spiral flowers with nested petal and sepal spurs and reduced petals. The mechanisms underlying the development and evolution of Delphinieae flowers, however, remain unclear. Here, by conducting extensive phylogenetic, comparative transcriptomic, expression, and functional studies, we clarified the evolutionary histories, expression patterns, and functions of floral organ identity and symmetry genes in Delphinieae. We found that duplication and/or diversification of APETALA3-3 (AP3-3), AGAMOUS-LIKE6 (AGL6), CYCLOIDEA (CYC), and DIVARICATA (DIV) lineage genes was tightly associated with the origination of Delphinieae flowers. Specifically, an AGL6-lineage member (such as the Delphinium ajacis AGL6-1a) represses sepal spur formation and petal development in the lateral and ventral parts of the flower while determining petal identity redundantly with AGL6-1b. By contrast, two CYC2-like genes, CYC2b and CYC2a, define the dorsal and lateral-ventral identities of the flower, respectively, and form complex regulatory links with AP3-3, AGL6-1a, and DIV1. Therefore, duplication and diversification of floral symmetry genes, as well as co-option of the duplicated copies into the preexisting floral regulatory network, have been key for the origin of Delphinieae flowers. The making of highly complex Delphinieae flowers involved the duplication and diversification of floral organ identity genes and floral symmetry genes, as well as the rewiring of their interactions.
ISSN:1040-4651
1532-298X
DOI:10.1093/plcell/koac368