Loading…
High-Performance Inverted Organic Solar Cells via the Incorporation of Thickness-Insensitive and Low-Temperature-Annealed Nonconjugated Polymers as Electron Transport Materials
Developing new electron transport layers has been an effective way to fabricate high-performance bulk-heterojunction organic solar cells (OSCs). Resolving the longstanding problems associated with commonly used zinc oxide (ZnO), such as electron traps and light-induced device deterioration, however,...
Saved in:
Published in: | ACS applied materials & interfaces 2023-01, Vol.15 (1), p.1718-1725 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a260t-24c84272fd40106e0d3a63016227160ab0ac44dfe339e89838f773ae8224c4cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-a260t-24c84272fd40106e0d3a63016227160ab0ac44dfe339e89838f773ae8224c4cf3 |
container_end_page | 1725 |
container_issue | 1 |
container_start_page | 1718 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Nie, Hebing Busireddy, Manohar Reddy Shih, Hung-Min Ko, Chung-Wen Chen, Jiun-Tai Chang, Chia-Chih Hsu, Chain-Shu |
description | Developing new electron transport layers has been an effective way to fabricate high-performance bulk-heterojunction organic solar cells (OSCs). Resolving the longstanding problems associated with commonly used zinc oxide (ZnO), such as electron traps and light-induced device deterioration, however, is still a great challenge. In this study, glycerol diglycidyl ether (GDE) and 1,4-butanesultone (BS) are blended with polyethyleneimine (PEI) to produce cross-linkable PEI-based materials, PEI-GDE and PEI-GDE-BS, which can function as alternative electron transport layers to replace conventional ZnO cathode-modifying layers in inverted OSCs. PEI-GDE and PEI-GDE-BS are amendable to low-temperature annealing processes to produce cross-linked films. The inverted device structure of ITO/ETL/PM6:BTP-BO-4F:PC71BM/MoO3/Ag was used to evaluate the effects of incorporating PEI-GDE and PEI-GDE-BS as electron transport materials. Compared with ZnO-based devices, the PEI-GDE- and PEI-GDE-BS-based devices exhibit significant improvements in photovoltaic performances due to smoother surface roughness, higher charge collection and exciton dissociation efficiencies, higher electron mobilities, and stronger π–π interactions. In particular, a PEI-GDE-BS-based device shows an outstanding power conversion efficiency (PCE) of 17.55% with a V OC of 0.83 V, a J SC of 27.88 mA/cm2, and an FF of 75.96%, which offers great possibilities in the applications of flexible solar cells. |
doi_str_mv | 10.1021/acsami.2c18946 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758107382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758107382</sourcerecordid><originalsourceid>FETCH-LOGICAL-a260t-24c84272fd40106e0d3a63016227160ab0ac44dfe339e89838f773ae8224c4cf3</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhi1ERUvLlSPyESFt8Fd2nWMVtTRSoJWanldT72zisGuH8W5Q_xU_EUcJvXEaH573GXlexj5KMZFCya_gEvR-opy0M1O-YRdyZkxh1VS9fX0bc87ep7QVotRKTN-xc11OjTVaX7A_d369KR6Q2kg9BId8EfZIAzb8ntYQvOOPsQPic-y6xPce-LA5QC7SLhIMPgYeW77aePczYErFIiQMyQ9-jxxCw5fxd7HCfocZHgmL6xAQuuz_EbMkbMc1HLY9xO6lR0ocEr_p0A2UxSuCkPKagX_PEHno0hU7a_PAD6d5yZ5ub1bzu2J5_20xv14WoEoxFMo4a1Sl2sYIKUoUjYZSC1kqVclSwLMAZ0zTotYztDOrbVtVGtCqnDSu1Zfs89G7o_hrxDTUvU8uHwECxjHVqppaKSptVUYnR9RRTImwrXfke6CXWor60FJ9bKk-tZQDn07u8bnH5hX_V0sGvhyBHKy3caSQv_o_219jlqBI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758107382</pqid></control><display><type>article</type><title>High-Performance Inverted Organic Solar Cells via the Incorporation of Thickness-Insensitive and Low-Temperature-Annealed Nonconjugated Polymers as Electron Transport Materials</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Nie, Hebing ; Busireddy, Manohar Reddy ; Shih, Hung-Min ; Ko, Chung-Wen ; Chen, Jiun-Tai ; Chang, Chia-Chih ; Hsu, Chain-Shu</creator><creatorcontrib>Nie, Hebing ; Busireddy, Manohar Reddy ; Shih, Hung-Min ; Ko, Chung-Wen ; Chen, Jiun-Tai ; Chang, Chia-Chih ; Hsu, Chain-Shu</creatorcontrib><description>Developing new electron transport layers has been an effective way to fabricate high-performance bulk-heterojunction organic solar cells (OSCs). Resolving the longstanding problems associated with commonly used zinc oxide (ZnO), such as electron traps and light-induced device deterioration, however, is still a great challenge. In this study, glycerol diglycidyl ether (GDE) and 1,4-butanesultone (BS) are blended with polyethyleneimine (PEI) to produce cross-linkable PEI-based materials, PEI-GDE and PEI-GDE-BS, which can function as alternative electron transport layers to replace conventional ZnO cathode-modifying layers in inverted OSCs. PEI-GDE and PEI-GDE-BS are amendable to low-temperature annealing processes to produce cross-linked films. The inverted device structure of ITO/ETL/PM6:BTP-BO-4F:PC71BM/MoO3/Ag was used to evaluate the effects of incorporating PEI-GDE and PEI-GDE-BS as electron transport materials. Compared with ZnO-based devices, the PEI-GDE- and PEI-GDE-BS-based devices exhibit significant improvements in photovoltaic performances due to smoother surface roughness, higher charge collection and exciton dissociation efficiencies, higher electron mobilities, and stronger π–π interactions. In particular, a PEI-GDE-BS-based device shows an outstanding power conversion efficiency (PCE) of 17.55% with a V OC of 0.83 V, a J SC of 27.88 mA/cm2, and an FF of 75.96%, which offers great possibilities in the applications of flexible solar cells.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c18946</identifier><identifier>PMID: 36548433</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Organic Electronic Devices</subject><ispartof>ACS applied materials & interfaces, 2023-01, Vol.15 (1), p.1718-1725</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a260t-24c84272fd40106e0d3a63016227160ab0ac44dfe339e89838f773ae8224c4cf3</citedby><cites>FETCH-LOGICAL-a260t-24c84272fd40106e0d3a63016227160ab0ac44dfe339e89838f773ae8224c4cf3</cites><orcidid>0000-0002-0662-782X ; 0000-0002-8312-2921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36548433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Hebing</creatorcontrib><creatorcontrib>Busireddy, Manohar Reddy</creatorcontrib><creatorcontrib>Shih, Hung-Min</creatorcontrib><creatorcontrib>Ko, Chung-Wen</creatorcontrib><creatorcontrib>Chen, Jiun-Tai</creatorcontrib><creatorcontrib>Chang, Chia-Chih</creatorcontrib><creatorcontrib>Hsu, Chain-Shu</creatorcontrib><title>High-Performance Inverted Organic Solar Cells via the Incorporation of Thickness-Insensitive and Low-Temperature-Annealed Nonconjugated Polymers as Electron Transport Materials</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Developing new electron transport layers has been an effective way to fabricate high-performance bulk-heterojunction organic solar cells (OSCs). Resolving the longstanding problems associated with commonly used zinc oxide (ZnO), such as electron traps and light-induced device deterioration, however, is still a great challenge. In this study, glycerol diglycidyl ether (GDE) and 1,4-butanesultone (BS) are blended with polyethyleneimine (PEI) to produce cross-linkable PEI-based materials, PEI-GDE and PEI-GDE-BS, which can function as alternative electron transport layers to replace conventional ZnO cathode-modifying layers in inverted OSCs. PEI-GDE and PEI-GDE-BS are amendable to low-temperature annealing processes to produce cross-linked films. The inverted device structure of ITO/ETL/PM6:BTP-BO-4F:PC71BM/MoO3/Ag was used to evaluate the effects of incorporating PEI-GDE and PEI-GDE-BS as electron transport materials. Compared with ZnO-based devices, the PEI-GDE- and PEI-GDE-BS-based devices exhibit significant improvements in photovoltaic performances due to smoother surface roughness, higher charge collection and exciton dissociation efficiencies, higher electron mobilities, and stronger π–π interactions. In particular, a PEI-GDE-BS-based device shows an outstanding power conversion efficiency (PCE) of 17.55% with a V OC of 0.83 V, a J SC of 27.88 mA/cm2, and an FF of 75.96%, which offers great possibilities in the applications of flexible solar cells.</description><subject>Organic Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kU1vEzEQhi1ERUvLlSPyESFt8Fd2nWMVtTRSoJWanldT72zisGuH8W5Q_xU_EUcJvXEaH573GXlexj5KMZFCya_gEvR-opy0M1O-YRdyZkxh1VS9fX0bc87ep7QVotRKTN-xc11OjTVaX7A_d369KR6Q2kg9BId8EfZIAzb8ntYQvOOPsQPic-y6xPce-LA5QC7SLhIMPgYeW77aePczYErFIiQMyQ9-jxxCw5fxd7HCfocZHgmL6xAQuuz_EbMkbMc1HLY9xO6lR0ocEr_p0A2UxSuCkPKagX_PEHno0hU7a_PAD6d5yZ5ub1bzu2J5_20xv14WoEoxFMo4a1Sl2sYIKUoUjYZSC1kqVclSwLMAZ0zTotYztDOrbVtVGtCqnDSu1Zfs89G7o_hrxDTUvU8uHwECxjHVqppaKSptVUYnR9RRTImwrXfke6CXWor60FJ9bKk-tZQDn07u8bnH5hX_V0sGvhyBHKy3caSQv_o_219jlqBI</recordid><startdate>20230111</startdate><enddate>20230111</enddate><creator>Nie, Hebing</creator><creator>Busireddy, Manohar Reddy</creator><creator>Shih, Hung-Min</creator><creator>Ko, Chung-Wen</creator><creator>Chen, Jiun-Tai</creator><creator>Chang, Chia-Chih</creator><creator>Hsu, Chain-Shu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0662-782X</orcidid><orcidid>https://orcid.org/0000-0002-8312-2921</orcidid></search><sort><creationdate>20230111</creationdate><title>High-Performance Inverted Organic Solar Cells via the Incorporation of Thickness-Insensitive and Low-Temperature-Annealed Nonconjugated Polymers as Electron Transport Materials</title><author>Nie, Hebing ; Busireddy, Manohar Reddy ; Shih, Hung-Min ; Ko, Chung-Wen ; Chen, Jiun-Tai ; Chang, Chia-Chih ; Hsu, Chain-Shu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a260t-24c84272fd40106e0d3a63016227160ab0ac44dfe339e89838f773ae8224c4cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Organic Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Hebing</creatorcontrib><creatorcontrib>Busireddy, Manohar Reddy</creatorcontrib><creatorcontrib>Shih, Hung-Min</creatorcontrib><creatorcontrib>Ko, Chung-Wen</creatorcontrib><creatorcontrib>Chen, Jiun-Tai</creatorcontrib><creatorcontrib>Chang, Chia-Chih</creatorcontrib><creatorcontrib>Hsu, Chain-Shu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Hebing</au><au>Busireddy, Manohar Reddy</au><au>Shih, Hung-Min</au><au>Ko, Chung-Wen</au><au>Chen, Jiun-Tai</au><au>Chang, Chia-Chih</au><au>Hsu, Chain-Shu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Inverted Organic Solar Cells via the Incorporation of Thickness-Insensitive and Low-Temperature-Annealed Nonconjugated Polymers as Electron Transport Materials</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-01-11</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>1718</spage><epage>1725</epage><pages>1718-1725</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Developing new electron transport layers has been an effective way to fabricate high-performance bulk-heterojunction organic solar cells (OSCs). Resolving the longstanding problems associated with commonly used zinc oxide (ZnO), such as electron traps and light-induced device deterioration, however, is still a great challenge. In this study, glycerol diglycidyl ether (GDE) and 1,4-butanesultone (BS) are blended with polyethyleneimine (PEI) to produce cross-linkable PEI-based materials, PEI-GDE and PEI-GDE-BS, which can function as alternative electron transport layers to replace conventional ZnO cathode-modifying layers in inverted OSCs. PEI-GDE and PEI-GDE-BS are amendable to low-temperature annealing processes to produce cross-linked films. The inverted device structure of ITO/ETL/PM6:BTP-BO-4F:PC71BM/MoO3/Ag was used to evaluate the effects of incorporating PEI-GDE and PEI-GDE-BS as electron transport materials. Compared with ZnO-based devices, the PEI-GDE- and PEI-GDE-BS-based devices exhibit significant improvements in photovoltaic performances due to smoother surface roughness, higher charge collection and exciton dissociation efficiencies, higher electron mobilities, and stronger π–π interactions. In particular, a PEI-GDE-BS-based device shows an outstanding power conversion efficiency (PCE) of 17.55% with a V OC of 0.83 V, a J SC of 27.88 mA/cm2, and an FF of 75.96%, which offers great possibilities in the applications of flexible solar cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36548433</pmid><doi>10.1021/acsami.2c18946</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0662-782X</orcidid><orcidid>https://orcid.org/0000-0002-8312-2921</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-01, Vol.15 (1), p.1718-1725 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2758107382 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Organic Electronic Devices |
title | High-Performance Inverted Organic Solar Cells via the Incorporation of Thickness-Insensitive and Low-Temperature-Annealed Nonconjugated Polymers as Electron Transport Materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Inverted%20Organic%20Solar%20Cells%20via%20the%20Incorporation%20of%20Thickness-Insensitive%20and%20Low-Temperature-Annealed%20Nonconjugated%20Polymers%20as%20Electron%20Transport%20Materials&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Nie,%20Hebing&rft.date=2023-01-11&rft.volume=15&rft.issue=1&rft.spage=1718&rft.epage=1725&rft.pages=1718-1725&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c18946&rft_dat=%3Cproquest_cross%3E2758107382%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a260t-24c84272fd40106e0d3a63016227160ab0ac44dfe339e89838f773ae8224c4cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2758107382&rft_id=info:pmid/36548433&rfr_iscdi=true |