Loading…

Identification of cancer types from gene expressions using learning techniques

Tumor is the major cause of death all around the world in recent days. Early detection and prediction of a cancer type are important for a patient's well-being. Functional genomic data has recently been used in the effective and early detection of cancer. According to previous research, the use...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in biomechanics and biomedical engineering 2023-12, Vol.ahead-of-print (ahead-of-print), p.1-15
Main Authors: Bhonde, Swati B., Wagh, Sharmila K., Prasad, Jayashree R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tumor is the major cause of death all around the world in recent days. Early detection and prediction of a cancer type are important for a patient's well-being. Functional genomic data has recently been used in the effective and early detection of cancer. According to previous research, the use of microarray data in cancer prediction has evidenced two main problems as high dimensionality and limited sample size. Several researchers have used numerous statistical and machine learning-based methods to classify cancer types but still, limitations are there which makes cancer classification a difficult job. Deep Learning (DL) and Convolutional Neural Networks (CNN) have been proven with effective analyses of unstructured data including gene expression data. In the proposed method gene expression data for five types of cancer is collected from The Cancer Genome Atlas (TCGA). Prominent features are selected using a hybrid Particle Swarm Optimization (PSO) and Random Forest (RF) algorithm followed by the use of Principal Component Analysis (PCA) for dimensionality reduction. Finally, for classification blend of Convolutional Neural Network (CNN) and Bi-directional Long Short Term Memory (Bi-LSTM) is used to predict the target type of cancer. Experimental results demonstrate that accuracy of the proposed method is 96.89%. As compared to existing work, our method outperformed with better results.
ISSN:1025-5842
1476-8259
DOI:10.1080/10255842.2022.2160243