Loading…
Investigation of the adsorption–desorption behavior of antibiotics by polybutylene succinate and polypropylene aged in different water conditions
Microplastics (MPs) are widely present in aqueous environments and aged by natural components of complex water environments, such as salinity (SI) and dissolved organic matter (DOM). However, the effects of multicondition aging on the physicochemical properties and environmental behavior of MPs have...
Saved in:
Published in: | Environmental science and pollution research international 2023-03, Vol.30 (13), p.36619-36630 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microplastics (MPs) are widely present in aqueous environments and aged by natural components of complex water environments, such as salinity (SI) and dissolved organic matter (DOM). However, the effects of multicondition aging on the physicochemical properties and environmental behavior of MPs have not been completely investigated. In this study, the degradable MP polybutylene succinate (PBS) was used to investigate the environmental behavior of sulfamethoxazole (SMZ) and was compared with polypropylene (PP). The results showed that the single-factor conditions of DOM and SI, particularly DOM, promoted the aging process of MPs more significantly, especially for PBS. The degrees of MP aging under multiple conditions were lower than those under single-factor conditions. Compared with PP, PBS had greater specific surface area, crystallinity, and hydrophilicity and thus a stronger SMZ adsorption capacity. The adsorption behavior of MPs fitted well with the pseudo-second-order kinetic and Freundlich isotherm models, indicating multilayer adsorption. Compared with PP, PBS showed relatively a higher adsorption capacity, for example, for MPs aged under DOM conditions, the adsorption of SMZ by PBS was up to 5.74 mg/g, whereas that for PP was only 3.41 mg/g. The desorption experiments showed that the desorption amount of SMZ on MPs in the simulated intestinal fluid was greater than that in Milli-Q water. In addition, both the original PBS and the aged PBS had stronger desorption capacities than that of PP. The desorption quantity of PBS was 1.23–1.84 times greater than PP, whereas the desorption rates were not significantly different. This experiment provides a theoretical basis for assessing the ecological risks of degradable MPs in complex water conditions. |
---|---|
ISSN: | 1614-7499 1614-7499 |
DOI: | 10.1007/s11356-022-24693-z |