Loading…

Defect‐Engineering‐Stabilized AgSbTe2 with High Thermoelectric Performance

Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low‐ and high‐temp...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2023-03, Vol.35 (11), p.e2208994-n/a
Main Authors: Zhang, Yu, Li, Zhi, Singh, Saurabh, Nozariasbmarz, Amin, Li, Wenjie, Genç, Aziz, Xia, Yi, Zheng, Luyao, Lee, Seng Huat, Karan, Sumanta Kumar, Goyal, Gagan K., Liu, Na, Mohan, Sanghadasa Mf, Mao, Zhiqiang, Cabot, Andreu, Wolverton, Christopher, Poudel, Bed, Priya, Shashank
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 11
container_start_page e2208994
container_title Advanced materials (Weinheim)
container_volume 35
creator Zhang, Yu
Li, Zhi
Singh, Saurabh
Nozariasbmarz, Amin
Li, Wenjie
Genç, Aziz
Xia, Yi
Zheng, Luyao
Lee, Seng Huat
Karan, Sumanta Kumar
Goyal, Gagan K.
Liu, Na
Mohan, Sanghadasa Mf
Mao, Zhiqiang
Cabot, Andreu
Wolverton, Christopher
Poudel, Bed
Priya, Shashank
description Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low‐ and high‐temperature regimes. However, there is an urgent demand for high‐performance TE materials working in the mid‐temperature range (400–700 K). Herein, p‐type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding maximum figure of merit (zTmax) of 2.3 at 673 K and an average figure of merit (zTave) of 1.59 over the wide temperature range of 300–673 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te, and ahighly improved stability beyond 673 K. The optimized material is used to fabricate a single‐leg device with efficiencies up to 13.3% and a unicouple TE device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. These results highlight an effective strategy to engineer high‐performance TE material in the mid‐temperature range. p‐Type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding thermoelectric (TE) figure of merit zTmax of 2.3 and a unicouple device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te.
doi_str_mv 10.1002/adma.202208994
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758114262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758114262</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3064-b1777c456973f08c497b1b4603129ba8ad3fe70c29825586b37e710aa5c8016e3</originalsourceid><addsrcrecordid>eNpdkMtKw0AUhgdRsFa3rgNu3KSemUzmsgxttUK9QOs6TKYn6ZRc6qSl1JWP4DP6JKZUXLj6-eE7h5-PkGsKAwrA7syiMgMGjIHSmp-QHo0ZDTno-JT0QEdxqAVX5-SibVcAoAWIHnkeYY528_35Na4LVyN6Vxddm21M5kr3gYsgKWbZHFmwc5tlMHHFMpgv0VcNlt2hdzZ4RZ83vjK1xUtylpuyxavf7JO3-_F8OAmnLw-Pw2QariMQPMyolNLyWGgZ5aAs1zKjGRcQUaYzo8wiylGCZVqxOFYiiyRKCsbEVgEVGPXJ7fHv2jfvW2w3aeVai2Vpamy2bcpkrCjlTLAOvfmHrpqtr7t1HaUkZQqE6ih9pHauxH269q4yfp9SSA9u04Pb9M9tmoyekr8W_QCGH2_i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787128068</pqid></control><display><type>article</type><title>Defect‐Engineering‐Stabilized AgSbTe2 with High Thermoelectric Performance</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhang, Yu ; Li, Zhi ; Singh, Saurabh ; Nozariasbmarz, Amin ; Li, Wenjie ; Genç, Aziz ; Xia, Yi ; Zheng, Luyao ; Lee, Seng Huat ; Karan, Sumanta Kumar ; Goyal, Gagan K. ; Liu, Na ; Mohan, Sanghadasa Mf ; Mao, Zhiqiang ; Cabot, Andreu ; Wolverton, Christopher ; Poudel, Bed ; Priya, Shashank</creator><creatorcontrib>Zhang, Yu ; Li, Zhi ; Singh, Saurabh ; Nozariasbmarz, Amin ; Li, Wenjie ; Genç, Aziz ; Xia, Yi ; Zheng, Luyao ; Lee, Seng Huat ; Karan, Sumanta Kumar ; Goyal, Gagan K. ; Liu, Na ; Mohan, Sanghadasa Mf ; Mao, Zhiqiang ; Cabot, Andreu ; Wolverton, Christopher ; Poudel, Bed ; Priya, Shashank</creatorcontrib><description>Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low‐ and high‐temperature regimes. However, there is an urgent demand for high‐performance TE materials working in the mid‐temperature range (400–700 K). Herein, p‐type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding maximum figure of merit (zTmax) of 2.3 at 673 K and an average figure of merit (zTave) of 1.59 over the wide temperature range of 300–673 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te, and ahighly improved stability beyond 673 K. The optimized material is used to fabricate a single‐leg device with efficiencies up to 13.3% and a unicouple TE device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. These results highlight an effective strategy to engineer high‐performance TE material in the mid‐temperature range. p‐Type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding thermoelectric (TE) figure of merit zTmax of 2.3 and a unicouple device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202208994</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>AgSbTe 2 ; band flattening ; Carrier density ; defect engineering ; Energy conversion efficiency ; Figure of merit ; mid‐temperature region ; Seebeck effect ; Silver antimony telluride ; Temperature gradients ; Thermoelectricity ; thermoelectrics ; Valence band ; waste heat recovery</subject><ispartof>Advanced materials (Weinheim), 2023-03, Vol.35 (11), p.e2208994-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0332-0013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Singh, Saurabh</creatorcontrib><creatorcontrib>Nozariasbmarz, Amin</creatorcontrib><creatorcontrib>Li, Wenjie</creatorcontrib><creatorcontrib>Genç, Aziz</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Zheng, Luyao</creatorcontrib><creatorcontrib>Lee, Seng Huat</creatorcontrib><creatorcontrib>Karan, Sumanta Kumar</creatorcontrib><creatorcontrib>Goyal, Gagan K.</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Mohan, Sanghadasa Mf</creatorcontrib><creatorcontrib>Mao, Zhiqiang</creatorcontrib><creatorcontrib>Cabot, Andreu</creatorcontrib><creatorcontrib>Wolverton, Christopher</creatorcontrib><creatorcontrib>Poudel, Bed</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><title>Defect‐Engineering‐Stabilized AgSbTe2 with High Thermoelectric Performance</title><title>Advanced materials (Weinheim)</title><description>Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low‐ and high‐temperature regimes. However, there is an urgent demand for high‐performance TE materials working in the mid‐temperature range (400–700 K). Herein, p‐type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding maximum figure of merit (zTmax) of 2.3 at 673 K and an average figure of merit (zTave) of 1.59 over the wide temperature range of 300–673 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te, and ahighly improved stability beyond 673 K. The optimized material is used to fabricate a single‐leg device with efficiencies up to 13.3% and a unicouple TE device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. These results highlight an effective strategy to engineer high‐performance TE material in the mid‐temperature range. p‐Type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding thermoelectric (TE) figure of merit zTmax of 2.3 and a unicouple device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te.</description><subject>AgSbTe 2</subject><subject>band flattening</subject><subject>Carrier density</subject><subject>defect engineering</subject><subject>Energy conversion efficiency</subject><subject>Figure of merit</subject><subject>mid‐temperature region</subject><subject>Seebeck effect</subject><subject>Silver antimony telluride</subject><subject>Temperature gradients</subject><subject>Thermoelectricity</subject><subject>thermoelectrics</subject><subject>Valence band</subject><subject>waste heat recovery</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKw0AUhgdRsFa3rgNu3KSemUzmsgxttUK9QOs6TKYn6ZRc6qSl1JWP4DP6JKZUXLj6-eE7h5-PkGsKAwrA7syiMgMGjIHSmp-QHo0ZDTno-JT0QEdxqAVX5-SibVcAoAWIHnkeYY528_35Na4LVyN6Vxddm21M5kr3gYsgKWbZHFmwc5tlMHHFMpgv0VcNlt2hdzZ4RZ83vjK1xUtylpuyxavf7JO3-_F8OAmnLw-Pw2QariMQPMyolNLyWGgZ5aAs1zKjGRcQUaYzo8wiylGCZVqxOFYiiyRKCsbEVgEVGPXJ7fHv2jfvW2w3aeVai2Vpamy2bcpkrCjlTLAOvfmHrpqtr7t1HaUkZQqE6ih9pHauxH269q4yfp9SSA9u04Pb9M9tmoyekr8W_QCGH2_i</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Zhang, Yu</creator><creator>Li, Zhi</creator><creator>Singh, Saurabh</creator><creator>Nozariasbmarz, Amin</creator><creator>Li, Wenjie</creator><creator>Genç, Aziz</creator><creator>Xia, Yi</creator><creator>Zheng, Luyao</creator><creator>Lee, Seng Huat</creator><creator>Karan, Sumanta Kumar</creator><creator>Goyal, Gagan K.</creator><creator>Liu, Na</creator><creator>Mohan, Sanghadasa Mf</creator><creator>Mao, Zhiqiang</creator><creator>Cabot, Andreu</creator><creator>Wolverton, Christopher</creator><creator>Poudel, Bed</creator><creator>Priya, Shashank</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0332-0013</orcidid></search><sort><creationdate>20230301</creationdate><title>Defect‐Engineering‐Stabilized AgSbTe2 with High Thermoelectric Performance</title><author>Zhang, Yu ; Li, Zhi ; Singh, Saurabh ; Nozariasbmarz, Amin ; Li, Wenjie ; Genç, Aziz ; Xia, Yi ; Zheng, Luyao ; Lee, Seng Huat ; Karan, Sumanta Kumar ; Goyal, Gagan K. ; Liu, Na ; Mohan, Sanghadasa Mf ; Mao, Zhiqiang ; Cabot, Andreu ; Wolverton, Christopher ; Poudel, Bed ; Priya, Shashank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3064-b1777c456973f08c497b1b4603129ba8ad3fe70c29825586b37e710aa5c8016e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AgSbTe 2</topic><topic>band flattening</topic><topic>Carrier density</topic><topic>defect engineering</topic><topic>Energy conversion efficiency</topic><topic>Figure of merit</topic><topic>mid‐temperature region</topic><topic>Seebeck effect</topic><topic>Silver antimony telluride</topic><topic>Temperature gradients</topic><topic>Thermoelectricity</topic><topic>thermoelectrics</topic><topic>Valence band</topic><topic>waste heat recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Singh, Saurabh</creatorcontrib><creatorcontrib>Nozariasbmarz, Amin</creatorcontrib><creatorcontrib>Li, Wenjie</creatorcontrib><creatorcontrib>Genç, Aziz</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Zheng, Luyao</creatorcontrib><creatorcontrib>Lee, Seng Huat</creatorcontrib><creatorcontrib>Karan, Sumanta Kumar</creatorcontrib><creatorcontrib>Goyal, Gagan K.</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Mohan, Sanghadasa Mf</creatorcontrib><creatorcontrib>Mao, Zhiqiang</creatorcontrib><creatorcontrib>Cabot, Andreu</creatorcontrib><creatorcontrib>Wolverton, Christopher</creatorcontrib><creatorcontrib>Poudel, Bed</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yu</au><au>Li, Zhi</au><au>Singh, Saurabh</au><au>Nozariasbmarz, Amin</au><au>Li, Wenjie</au><au>Genç, Aziz</au><au>Xia, Yi</au><au>Zheng, Luyao</au><au>Lee, Seng Huat</au><au>Karan, Sumanta Kumar</au><au>Goyal, Gagan K.</au><au>Liu, Na</au><au>Mohan, Sanghadasa Mf</au><au>Mao, Zhiqiang</au><au>Cabot, Andreu</au><au>Wolverton, Christopher</au><au>Poudel, Bed</au><au>Priya, Shashank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect‐Engineering‐Stabilized AgSbTe2 with High Thermoelectric Performance</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>35</volume><issue>11</issue><spage>e2208994</spage><epage>n/a</epage><pages>e2208994-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low‐ and high‐temperature regimes. However, there is an urgent demand for high‐performance TE materials working in the mid‐temperature range (400–700 K). Herein, p‐type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding maximum figure of merit (zTmax) of 2.3 at 673 K and an average figure of merit (zTave) of 1.59 over the wide temperature range of 300–673 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te, and ahighly improved stability beyond 673 K. The optimized material is used to fabricate a single‐leg device with efficiencies up to 13.3% and a unicouple TE device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. These results highlight an effective strategy to engineer high‐performance TE material in the mid‐temperature range. p‐Type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding thermoelectric (TE) figure of merit zTmax of 2.3 and a unicouple device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202208994</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0332-0013</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-03, Vol.35 (11), p.e2208994-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2758114262
source Wiley-Blackwell Read & Publish Collection
subjects AgSbTe 2
band flattening
Carrier density
defect engineering
Energy conversion efficiency
Figure of merit
mid‐temperature region
Seebeck effect
Silver antimony telluride
Temperature gradients
Thermoelectricity
thermoelectrics
Valence band
waste heat recovery
title Defect‐Engineering‐Stabilized AgSbTe2 with High Thermoelectric Performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T15%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%E2%80%90Engineering%E2%80%90Stabilized%20AgSbTe2%20with%20High%20Thermoelectric%20Performance&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Yu&rft.date=2023-03-01&rft.volume=35&rft.issue=11&rft.spage=e2208994&rft.epage=n/a&rft.pages=e2208994-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202208994&rft_dat=%3Cproquest_wiley%3E2758114262%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p3064-b1777c456973f08c497b1b4603129ba8ad3fe70c29825586b37e710aa5c8016e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787128068&rft_id=info:pmid/&rfr_iscdi=true