Loading…
Defect‐Engineering‐Stabilized AgSbTe2 with High Thermoelectric Performance
Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low‐ and high‐temp...
Saved in:
Published in: | Advanced materials (Weinheim) 2023-03, Vol.35 (11), p.e2208994-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 11 |
container_start_page | e2208994 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Zhang, Yu Li, Zhi Singh, Saurabh Nozariasbmarz, Amin Li, Wenjie Genç, Aziz Xia, Yi Zheng, Luyao Lee, Seng Huat Karan, Sumanta Kumar Goyal, Gagan K. Liu, Na Mohan, Sanghadasa Mf Mao, Zhiqiang Cabot, Andreu Wolverton, Christopher Poudel, Bed Priya, Shashank |
description | Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low‐ and high‐temperature regimes. However, there is an urgent demand for high‐performance TE materials working in the mid‐temperature range (400–700 K). Herein, p‐type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding maximum figure of merit (zTmax) of 2.3 at 673 K and an average figure of merit (zTave) of 1.59 over the wide temperature range of 300–673 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te, and ahighly improved stability beyond 673 K. The optimized material is used to fabricate a single‐leg device with efficiencies up to 13.3% and a unicouple TE device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. These results highlight an effective strategy to engineer high‐performance TE material in the mid‐temperature range.
p‐Type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding thermoelectric (TE) figure of merit zTmax of 2.3 and a unicouple device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te. |
doi_str_mv | 10.1002/adma.202208994 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758114262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758114262</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3064-b1777c456973f08c497b1b4603129ba8ad3fe70c29825586b37e710aa5c8016e3</originalsourceid><addsrcrecordid>eNpdkMtKw0AUhgdRsFa3rgNu3KSemUzmsgxttUK9QOs6TKYn6ZRc6qSl1JWP4DP6JKZUXLj6-eE7h5-PkGsKAwrA7syiMgMGjIHSmp-QHo0ZDTno-JT0QEdxqAVX5-SibVcAoAWIHnkeYY528_35Na4LVyN6Vxddm21M5kr3gYsgKWbZHFmwc5tlMHHFMpgv0VcNlt2hdzZ4RZ83vjK1xUtylpuyxavf7JO3-_F8OAmnLw-Pw2QariMQPMyolNLyWGgZ5aAs1zKjGRcQUaYzo8wiylGCZVqxOFYiiyRKCsbEVgEVGPXJ7fHv2jfvW2w3aeVai2Vpamy2bcpkrCjlTLAOvfmHrpqtr7t1HaUkZQqE6ih9pHauxH269q4yfp9SSA9u04Pb9M9tmoyekr8W_QCGH2_i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787128068</pqid></control><display><type>article</type><title>Defect‐Engineering‐Stabilized AgSbTe2 with High Thermoelectric Performance</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhang, Yu ; Li, Zhi ; Singh, Saurabh ; Nozariasbmarz, Amin ; Li, Wenjie ; Genç, Aziz ; Xia, Yi ; Zheng, Luyao ; Lee, Seng Huat ; Karan, Sumanta Kumar ; Goyal, Gagan K. ; Liu, Na ; Mohan, Sanghadasa Mf ; Mao, Zhiqiang ; Cabot, Andreu ; Wolverton, Christopher ; Poudel, Bed ; Priya, Shashank</creator><creatorcontrib>Zhang, Yu ; Li, Zhi ; Singh, Saurabh ; Nozariasbmarz, Amin ; Li, Wenjie ; Genç, Aziz ; Xia, Yi ; Zheng, Luyao ; Lee, Seng Huat ; Karan, Sumanta Kumar ; Goyal, Gagan K. ; Liu, Na ; Mohan, Sanghadasa Mf ; Mao, Zhiqiang ; Cabot, Andreu ; Wolverton, Christopher ; Poudel, Bed ; Priya, Shashank</creatorcontrib><description>Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low‐ and high‐temperature regimes. However, there is an urgent demand for high‐performance TE materials working in the mid‐temperature range (400–700 K). Herein, p‐type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding maximum figure of merit (zTmax) of 2.3 at 673 K and an average figure of merit (zTave) of 1.59 over the wide temperature range of 300–673 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te, and ahighly improved stability beyond 673 K. The optimized material is used to fabricate a single‐leg device with efficiencies up to 13.3% and a unicouple TE device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. These results highlight an effective strategy to engineer high‐performance TE material in the mid‐temperature range.
p‐Type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding thermoelectric (TE) figure of merit zTmax of 2.3 and a unicouple device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202208994</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>AgSbTe 2 ; band flattening ; Carrier density ; defect engineering ; Energy conversion efficiency ; Figure of merit ; mid‐temperature region ; Seebeck effect ; Silver antimony telluride ; Temperature gradients ; Thermoelectricity ; thermoelectrics ; Valence band ; waste heat recovery</subject><ispartof>Advanced materials (Weinheim), 2023-03, Vol.35 (11), p.e2208994-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0332-0013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Singh, Saurabh</creatorcontrib><creatorcontrib>Nozariasbmarz, Amin</creatorcontrib><creatorcontrib>Li, Wenjie</creatorcontrib><creatorcontrib>Genç, Aziz</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Zheng, Luyao</creatorcontrib><creatorcontrib>Lee, Seng Huat</creatorcontrib><creatorcontrib>Karan, Sumanta Kumar</creatorcontrib><creatorcontrib>Goyal, Gagan K.</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Mohan, Sanghadasa Mf</creatorcontrib><creatorcontrib>Mao, Zhiqiang</creatorcontrib><creatorcontrib>Cabot, Andreu</creatorcontrib><creatorcontrib>Wolverton, Christopher</creatorcontrib><creatorcontrib>Poudel, Bed</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><title>Defect‐Engineering‐Stabilized AgSbTe2 with High Thermoelectric Performance</title><title>Advanced materials (Weinheim)</title><description>Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low‐ and high‐temperature regimes. However, there is an urgent demand for high‐performance TE materials working in the mid‐temperature range (400–700 K). Herein, p‐type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding maximum figure of merit (zTmax) of 2.3 at 673 K and an average figure of merit (zTave) of 1.59 over the wide temperature range of 300–673 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te, and ahighly improved stability beyond 673 K. The optimized material is used to fabricate a single‐leg device with efficiencies up to 13.3% and a unicouple TE device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. These results highlight an effective strategy to engineer high‐performance TE material in the mid‐temperature range.
p‐Type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding thermoelectric (TE) figure of merit zTmax of 2.3 and a unicouple device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te.</description><subject>AgSbTe 2</subject><subject>band flattening</subject><subject>Carrier density</subject><subject>defect engineering</subject><subject>Energy conversion efficiency</subject><subject>Figure of merit</subject><subject>mid‐temperature region</subject><subject>Seebeck effect</subject><subject>Silver antimony telluride</subject><subject>Temperature gradients</subject><subject>Thermoelectricity</subject><subject>thermoelectrics</subject><subject>Valence band</subject><subject>waste heat recovery</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKw0AUhgdRsFa3rgNu3KSemUzmsgxttUK9QOs6TKYn6ZRc6qSl1JWP4DP6JKZUXLj6-eE7h5-PkGsKAwrA7syiMgMGjIHSmp-QHo0ZDTno-JT0QEdxqAVX5-SibVcAoAWIHnkeYY528_35Na4LVyN6Vxddm21M5kr3gYsgKWbZHFmwc5tlMHHFMpgv0VcNlt2hdzZ4RZ83vjK1xUtylpuyxavf7JO3-_F8OAmnLw-Pw2QariMQPMyolNLyWGgZ5aAs1zKjGRcQUaYzo8wiylGCZVqxOFYiiyRKCsbEVgEVGPXJ7fHv2jfvW2w3aeVai2Vpamy2bcpkrCjlTLAOvfmHrpqtr7t1HaUkZQqE6ih9pHauxH269q4yfp9SSA9u04Pb9M9tmoyekr8W_QCGH2_i</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Zhang, Yu</creator><creator>Li, Zhi</creator><creator>Singh, Saurabh</creator><creator>Nozariasbmarz, Amin</creator><creator>Li, Wenjie</creator><creator>Genç, Aziz</creator><creator>Xia, Yi</creator><creator>Zheng, Luyao</creator><creator>Lee, Seng Huat</creator><creator>Karan, Sumanta Kumar</creator><creator>Goyal, Gagan K.</creator><creator>Liu, Na</creator><creator>Mohan, Sanghadasa Mf</creator><creator>Mao, Zhiqiang</creator><creator>Cabot, Andreu</creator><creator>Wolverton, Christopher</creator><creator>Poudel, Bed</creator><creator>Priya, Shashank</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0332-0013</orcidid></search><sort><creationdate>20230301</creationdate><title>Defect‐Engineering‐Stabilized AgSbTe2 with High Thermoelectric Performance</title><author>Zhang, Yu ; Li, Zhi ; Singh, Saurabh ; Nozariasbmarz, Amin ; Li, Wenjie ; Genç, Aziz ; Xia, Yi ; Zheng, Luyao ; Lee, Seng Huat ; Karan, Sumanta Kumar ; Goyal, Gagan K. ; Liu, Na ; Mohan, Sanghadasa Mf ; Mao, Zhiqiang ; Cabot, Andreu ; Wolverton, Christopher ; Poudel, Bed ; Priya, Shashank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3064-b1777c456973f08c497b1b4603129ba8ad3fe70c29825586b37e710aa5c8016e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AgSbTe 2</topic><topic>band flattening</topic><topic>Carrier density</topic><topic>defect engineering</topic><topic>Energy conversion efficiency</topic><topic>Figure of merit</topic><topic>mid‐temperature region</topic><topic>Seebeck effect</topic><topic>Silver antimony telluride</topic><topic>Temperature gradients</topic><topic>Thermoelectricity</topic><topic>thermoelectrics</topic><topic>Valence band</topic><topic>waste heat recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Singh, Saurabh</creatorcontrib><creatorcontrib>Nozariasbmarz, Amin</creatorcontrib><creatorcontrib>Li, Wenjie</creatorcontrib><creatorcontrib>Genç, Aziz</creatorcontrib><creatorcontrib>Xia, Yi</creatorcontrib><creatorcontrib>Zheng, Luyao</creatorcontrib><creatorcontrib>Lee, Seng Huat</creatorcontrib><creatorcontrib>Karan, Sumanta Kumar</creatorcontrib><creatorcontrib>Goyal, Gagan K.</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Mohan, Sanghadasa Mf</creatorcontrib><creatorcontrib>Mao, Zhiqiang</creatorcontrib><creatorcontrib>Cabot, Andreu</creatorcontrib><creatorcontrib>Wolverton, Christopher</creatorcontrib><creatorcontrib>Poudel, Bed</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yu</au><au>Li, Zhi</au><au>Singh, Saurabh</au><au>Nozariasbmarz, Amin</au><au>Li, Wenjie</au><au>Genç, Aziz</au><au>Xia, Yi</au><au>Zheng, Luyao</au><au>Lee, Seng Huat</au><au>Karan, Sumanta Kumar</au><au>Goyal, Gagan K.</au><au>Liu, Na</au><au>Mohan, Sanghadasa Mf</au><au>Mao, Zhiqiang</au><au>Cabot, Andreu</au><au>Wolverton, Christopher</au><au>Poudel, Bed</au><au>Priya, Shashank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect‐Engineering‐Stabilized AgSbTe2 with High Thermoelectric Performance</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>35</volume><issue>11</issue><spage>e2208994</spage><epage>n/a</epage><pages>e2208994-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low‐ and high‐temperature regimes. However, there is an urgent demand for high‐performance TE materials working in the mid‐temperature range (400–700 K). Herein, p‐type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding maximum figure of merit (zTmax) of 2.3 at 673 K and an average figure of merit (zTave) of 1.59 over the wide temperature range of 300–673 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te, and ahighly improved stability beyond 673 K. The optimized material is used to fabricate a single‐leg device with efficiencies up to 13.3% and a unicouple TE device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. These results highlight an effective strategy to engineer high‐performance TE material in the mid‐temperature range.
p‐Type AgSbTe2 materials stabilized with S and Se co‐doping are demonstrated to exhibit an outstanding thermoelectric (TE) figure of merit zTmax of 2.3 and a unicouple device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n‐type Ag2Te.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202208994</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0332-0013</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-03, Vol.35 (11), p.e2208994-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2758114262 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | AgSbTe 2 band flattening Carrier density defect engineering Energy conversion efficiency Figure of merit mid‐temperature region Seebeck effect Silver antimony telluride Temperature gradients Thermoelectricity thermoelectrics Valence band waste heat recovery |
title | Defect‐Engineering‐Stabilized AgSbTe2 with High Thermoelectric Performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T15%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%E2%80%90Engineering%E2%80%90Stabilized%20AgSbTe2%20with%20High%20Thermoelectric%20Performance&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Yu&rft.date=2023-03-01&rft.volume=35&rft.issue=11&rft.spage=e2208994&rft.epage=n/a&rft.pages=e2208994-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202208994&rft_dat=%3Cproquest_wiley%3E2758114262%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p3064-b1777c456973f08c497b1b4603129ba8ad3fe70c29825586b37e710aa5c8016e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787128068&rft_id=info:pmid/&rfr_iscdi=true |