Loading…

A reverse Monte Carlo algorithm to simulate two‐dimensional small‐angle scattering intensities

Small‐angle scattering (SAS) experiments are a powerful method for studying self‐assembly phenomena in nanoscopic materials because of the sensitivity of the technique to structures formed by interactions on the nanoscale. Numerous out‐of‐the‐box options exist for analysing structures measured by SA...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied crystallography 2022-12, Vol.55 (6), p.1592-1602
Main Authors: Barnsley, Lester C., Nandakumaran, Nileena, Feoktystov, Artem, Dulle, Martin, Fruhner, Lisa, Feygenson, Mikhail
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743
cites cdi_FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743
container_end_page 1602
container_issue 6
container_start_page 1592
container_title Journal of applied crystallography
container_volume 55
creator Barnsley, Lester C.
Nandakumaran, Nileena
Feoktystov, Artem
Dulle, Martin
Fruhner, Lisa
Feygenson, Mikhail
description Small‐angle scattering (SAS) experiments are a powerful method for studying self‐assembly phenomena in nanoscopic materials because of the sensitivity of the technique to structures formed by interactions on the nanoscale. Numerous out‐of‐the‐box options exist for analysing structures measured by SAS but many of these are underpinned by assumptions about the underlying interactions that are not always relevant for a given system. Here, a numerical algorithm based on reverse Monte Carlo simulations is described to model the intensity observed on a SAS detector as a function of the scattering vector. The model simulates a two‐dimensional detector image, accounting for magnetic scattering, instrument resolution, particle polydispersity and particle collisions, while making no further assumptions about the underlying particle interactions. By simulating a two‐dimensional image that can be potentially anisotropic, the algorithm is particularly useful for studying systems driven by anisotropic interactions. The final output of the algorithm is a relative particle distribution, allowing visualization of particle structures that form over long‐range length scales (i.e. several hundred nanometres), along with an orientational distribution of magnetic moments. The effectiveness of the algorithm is shown by modelling a SAS experimental data set studying finite‐length chains consisting of magnetic nanoparticles, which assembled in the presence of a strong magnetic field due to dipole interactions. Small‐angle neutron scattering and small‐angle X‐ray scattering are important experimental techniques for studying the behaviour and properties of materials on the nanoscale. This article describes a numerical algorithm that uses reverse Monte Carlo simulations to model scattering intensities observed on a two‐dimensional small‐angle scattering detector.
doi_str_mv 10.1107/S1600576722009219
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758353117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2746116601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743</originalsourceid><addsrcrecordid>eNqFkc1O3DAUhS1ExdChD8CmssSmm1BfO44nSzRqaatBSPxsuomc5Hpq5MRgJ0Wz4xF4xj5JHQ2gqixYWLaOv3Okew8hh8COAZj6fAkFY1IVinPGSg7lDtmfpGzSdv95z8j7GG8YgwndIzNRSMXS2Sf1CQ34G0NEeub7AelSB-epdmsf7PCro4On0Xaj0-lvuPd_Hh5b22Efre-1o7HTziVN92uHNDZ6GDDYfk1tykrQYDEekHdGu4gfnu45uf765Wr5LVudn35fnqyyJuc8zwxItkDBDRhUuVRGNlw0hrVQ543KFTdY1q1gShoUUtRKSDBaLMoaualVLubk0zb3Nvi7EeNQdTY26Jzu0Y-x4koukhFAJfToP_TGjyENNFF5AVAUDBIFW6oJPsaAproNttNhUwGrpgKqVwUkz8en5LHusH1xPG88AeUWuLcON28nVj-WF_z6p2QsF38BoDuS8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746116601</pqid></control><display><type>article</type><title>A reverse Monte Carlo algorithm to simulate two‐dimensional small‐angle scattering intensities</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Barnsley, Lester C. ; Nandakumaran, Nileena ; Feoktystov, Artem ; Dulle, Martin ; Fruhner, Lisa ; Feygenson, Mikhail</creator><creatorcontrib>Barnsley, Lester C. ; Nandakumaran, Nileena ; Feoktystov, Artem ; Dulle, Martin ; Fruhner, Lisa ; Feygenson, Mikhail</creatorcontrib><description>Small‐angle scattering (SAS) experiments are a powerful method for studying self‐assembly phenomena in nanoscopic materials because of the sensitivity of the technique to structures formed by interactions on the nanoscale. Numerous out‐of‐the‐box options exist for analysing structures measured by SAS but many of these are underpinned by assumptions about the underlying interactions that are not always relevant for a given system. Here, a numerical algorithm based on reverse Monte Carlo simulations is described to model the intensity observed on a SAS detector as a function of the scattering vector. The model simulates a two‐dimensional detector image, accounting for magnetic scattering, instrument resolution, particle polydispersity and particle collisions, while making no further assumptions about the underlying particle interactions. By simulating a two‐dimensional image that can be potentially anisotropic, the algorithm is particularly useful for studying systems driven by anisotropic interactions. The final output of the algorithm is a relative particle distribution, allowing visualization of particle structures that form over long‐range length scales (i.e. several hundred nanometres), along with an orientational distribution of magnetic moments. The effectiveness of the algorithm is shown by modelling a SAS experimental data set studying finite‐length chains consisting of magnetic nanoparticles, which assembled in the presence of a strong magnetic field due to dipole interactions. Small‐angle neutron scattering and small‐angle X‐ray scattering are important experimental techniques for studying the behaviour and properties of materials on the nanoscale. This article describes a numerical algorithm that uses reverse Monte Carlo simulations to model scattering intensities observed on a two‐dimensional small‐angle scattering detector.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576722009219</identifier><identifier>PMID: 36570657</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Algorithms ; Anisotropy ; Computer simulation ; Dipole interactions ; Magnetic fields ; Magnetic moments ; magnetic nanoparticles ; Nanoparticles ; Numerical analysis ; Particle collisions ; Particle interactions ; Polydispersity ; reverse Monte Carlo simulations ; Scattering ; small‐angle neutron scattering ; small‐angle X‐ray scattering ; superparamagnetic iron oxide nanoparticles ; Wave dispersion</subject><ispartof>Journal of applied crystallography, 2022-12, Vol.55 (6), p.1592-1602</ispartof><rights>2022 Lester C. Barnsley et al. published by IUCr Journals.</rights><rights>Lester C. Barnsley et al. 2022.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743</citedby><cites>FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743</cites><orcidid>0000-0003-3647-4008 ; 0000-0003-2661-1021 ; 0000-0002-1341-905X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36570657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barnsley, Lester C.</creatorcontrib><creatorcontrib>Nandakumaran, Nileena</creatorcontrib><creatorcontrib>Feoktystov, Artem</creatorcontrib><creatorcontrib>Dulle, Martin</creatorcontrib><creatorcontrib>Fruhner, Lisa</creatorcontrib><creatorcontrib>Feygenson, Mikhail</creatorcontrib><title>A reverse Monte Carlo algorithm to simulate two‐dimensional small‐angle scattering intensities</title><title>Journal of applied crystallography</title><addtitle>J Appl Crystallogr</addtitle><description>Small‐angle scattering (SAS) experiments are a powerful method for studying self‐assembly phenomena in nanoscopic materials because of the sensitivity of the technique to structures formed by interactions on the nanoscale. Numerous out‐of‐the‐box options exist for analysing structures measured by SAS but many of these are underpinned by assumptions about the underlying interactions that are not always relevant for a given system. Here, a numerical algorithm based on reverse Monte Carlo simulations is described to model the intensity observed on a SAS detector as a function of the scattering vector. The model simulates a two‐dimensional detector image, accounting for magnetic scattering, instrument resolution, particle polydispersity and particle collisions, while making no further assumptions about the underlying particle interactions. By simulating a two‐dimensional image that can be potentially anisotropic, the algorithm is particularly useful for studying systems driven by anisotropic interactions. The final output of the algorithm is a relative particle distribution, allowing visualization of particle structures that form over long‐range length scales (i.e. several hundred nanometres), along with an orientational distribution of magnetic moments. The effectiveness of the algorithm is shown by modelling a SAS experimental data set studying finite‐length chains consisting of magnetic nanoparticles, which assembled in the presence of a strong magnetic field due to dipole interactions. Small‐angle neutron scattering and small‐angle X‐ray scattering are important experimental techniques for studying the behaviour and properties of materials on the nanoscale. This article describes a numerical algorithm that uses reverse Monte Carlo simulations to model scattering intensities observed on a two‐dimensional small‐angle scattering detector.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Computer simulation</subject><subject>Dipole interactions</subject><subject>Magnetic fields</subject><subject>Magnetic moments</subject><subject>magnetic nanoparticles</subject><subject>Nanoparticles</subject><subject>Numerical analysis</subject><subject>Particle collisions</subject><subject>Particle interactions</subject><subject>Polydispersity</subject><subject>reverse Monte Carlo simulations</subject><subject>Scattering</subject><subject>small‐angle neutron scattering</subject><subject>small‐angle X‐ray scattering</subject><subject>superparamagnetic iron oxide nanoparticles</subject><subject>Wave dispersion</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1O3DAUhS1ExdChD8CmssSmm1BfO44nSzRqaatBSPxsuomc5Hpq5MRgJ0Wz4xF4xj5JHQ2gqixYWLaOv3Okew8hh8COAZj6fAkFY1IVinPGSg7lDtmfpGzSdv95z8j7GG8YgwndIzNRSMXS2Sf1CQ34G0NEeub7AelSB-epdmsf7PCro4On0Xaj0-lvuPd_Hh5b22Efre-1o7HTziVN92uHNDZ6GDDYfk1tykrQYDEekHdGu4gfnu45uf765Wr5LVudn35fnqyyJuc8zwxItkDBDRhUuVRGNlw0hrVQ543KFTdY1q1gShoUUtRKSDBaLMoaualVLubk0zb3Nvi7EeNQdTY26Jzu0Y-x4koukhFAJfToP_TGjyENNFF5AVAUDBIFW6oJPsaAproNttNhUwGrpgKqVwUkz8en5LHusH1xPG88AeUWuLcON28nVj-WF_z6p2QsF38BoDuS8g</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Barnsley, Lester C.</creator><creator>Nandakumaran, Nileena</creator><creator>Feoktystov, Artem</creator><creator>Dulle, Martin</creator><creator>Fruhner, Lisa</creator><creator>Feygenson, Mikhail</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3647-4008</orcidid><orcidid>https://orcid.org/0000-0003-2661-1021</orcidid><orcidid>https://orcid.org/0000-0002-1341-905X</orcidid></search><sort><creationdate>202212</creationdate><title>A reverse Monte Carlo algorithm to simulate two‐dimensional small‐angle scattering intensities</title><author>Barnsley, Lester C. ; Nandakumaran, Nileena ; Feoktystov, Artem ; Dulle, Martin ; Fruhner, Lisa ; Feygenson, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Computer simulation</topic><topic>Dipole interactions</topic><topic>Magnetic fields</topic><topic>Magnetic moments</topic><topic>magnetic nanoparticles</topic><topic>Nanoparticles</topic><topic>Numerical analysis</topic><topic>Particle collisions</topic><topic>Particle interactions</topic><topic>Polydispersity</topic><topic>reverse Monte Carlo simulations</topic><topic>Scattering</topic><topic>small‐angle neutron scattering</topic><topic>small‐angle X‐ray scattering</topic><topic>superparamagnetic iron oxide nanoparticles</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnsley, Lester C.</creatorcontrib><creatorcontrib>Nandakumaran, Nileena</creatorcontrib><creatorcontrib>Feoktystov, Artem</creatorcontrib><creatorcontrib>Dulle, Martin</creatorcontrib><creatorcontrib>Fruhner, Lisa</creatorcontrib><creatorcontrib>Feygenson, Mikhail</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnsley, Lester C.</au><au>Nandakumaran, Nileena</au><au>Feoktystov, Artem</au><au>Dulle, Martin</au><au>Fruhner, Lisa</au><au>Feygenson, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A reverse Monte Carlo algorithm to simulate two‐dimensional small‐angle scattering intensities</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J Appl Crystallogr</addtitle><date>2022-12</date><risdate>2022</risdate><volume>55</volume><issue>6</issue><spage>1592</spage><epage>1602</epage><pages>1592-1602</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Small‐angle scattering (SAS) experiments are a powerful method for studying self‐assembly phenomena in nanoscopic materials because of the sensitivity of the technique to structures formed by interactions on the nanoscale. Numerous out‐of‐the‐box options exist for analysing structures measured by SAS but many of these are underpinned by assumptions about the underlying interactions that are not always relevant for a given system. Here, a numerical algorithm based on reverse Monte Carlo simulations is described to model the intensity observed on a SAS detector as a function of the scattering vector. The model simulates a two‐dimensional detector image, accounting for magnetic scattering, instrument resolution, particle polydispersity and particle collisions, while making no further assumptions about the underlying particle interactions. By simulating a two‐dimensional image that can be potentially anisotropic, the algorithm is particularly useful for studying systems driven by anisotropic interactions. The final output of the algorithm is a relative particle distribution, allowing visualization of particle structures that form over long‐range length scales (i.e. several hundred nanometres), along with an orientational distribution of magnetic moments. The effectiveness of the algorithm is shown by modelling a SAS experimental data set studying finite‐length chains consisting of magnetic nanoparticles, which assembled in the presence of a strong magnetic field due to dipole interactions. Small‐angle neutron scattering and small‐angle X‐ray scattering are important experimental techniques for studying the behaviour and properties of materials on the nanoscale. This article describes a numerical algorithm that uses reverse Monte Carlo simulations to model scattering intensities observed on a two‐dimensional small‐angle scattering detector.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>36570657</pmid><doi>10.1107/S1600576722009219</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3647-4008</orcidid><orcidid>https://orcid.org/0000-0003-2661-1021</orcidid><orcidid>https://orcid.org/0000-0002-1341-905X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2022-12, Vol.55 (6), p.1592-1602
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_proquest_miscellaneous_2758353117
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Anisotropy
Computer simulation
Dipole interactions
Magnetic fields
Magnetic moments
magnetic nanoparticles
Nanoparticles
Numerical analysis
Particle collisions
Particle interactions
Polydispersity
reverse Monte Carlo simulations
Scattering
small‐angle neutron scattering
small‐angle X‐ray scattering
superparamagnetic iron oxide nanoparticles
Wave dispersion
title A reverse Monte Carlo algorithm to simulate two‐dimensional small‐angle scattering intensities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20reverse%20Monte%20Carlo%20algorithm%20to%20simulate%20two%E2%80%90dimensional%20small%E2%80%90angle%20scattering%20intensities&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Barnsley,%20Lester%20C.&rft.date=2022-12&rft.volume=55&rft.issue=6&rft.spage=1592&rft.epage=1602&rft.pages=1592-1602&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576722009219&rft_dat=%3Cproquest_cross%3E2746116601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2746116601&rft_id=info:pmid/36570657&rfr_iscdi=true