Loading…
A reverse Monte Carlo algorithm to simulate two‐dimensional small‐angle scattering intensities
Small‐angle scattering (SAS) experiments are a powerful method for studying self‐assembly phenomena in nanoscopic materials because of the sensitivity of the technique to structures formed by interactions on the nanoscale. Numerous out‐of‐the‐box options exist for analysing structures measured by SA...
Saved in:
Published in: | Journal of applied crystallography 2022-12, Vol.55 (6), p.1592-1602 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743 |
---|---|
cites | cdi_FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743 |
container_end_page | 1602 |
container_issue | 6 |
container_start_page | 1592 |
container_title | Journal of applied crystallography |
container_volume | 55 |
creator | Barnsley, Lester C. Nandakumaran, Nileena Feoktystov, Artem Dulle, Martin Fruhner, Lisa Feygenson, Mikhail |
description | Small‐angle scattering (SAS) experiments are a powerful method for studying self‐assembly phenomena in nanoscopic materials because of the sensitivity of the technique to structures formed by interactions on the nanoscale. Numerous out‐of‐the‐box options exist for analysing structures measured by SAS but many of these are underpinned by assumptions about the underlying interactions that are not always relevant for a given system. Here, a numerical algorithm based on reverse Monte Carlo simulations is described to model the intensity observed on a SAS detector as a function of the scattering vector. The model simulates a two‐dimensional detector image, accounting for magnetic scattering, instrument resolution, particle polydispersity and particle collisions, while making no further assumptions about the underlying particle interactions. By simulating a two‐dimensional image that can be potentially anisotropic, the algorithm is particularly useful for studying systems driven by anisotropic interactions. The final output of the algorithm is a relative particle distribution, allowing visualization of particle structures that form over long‐range length scales (i.e. several hundred nanometres), along with an orientational distribution of magnetic moments. The effectiveness of the algorithm is shown by modelling a SAS experimental data set studying finite‐length chains consisting of magnetic nanoparticles, which assembled in the presence of a strong magnetic field due to dipole interactions.
Small‐angle neutron scattering and small‐angle X‐ray scattering are important experimental techniques for studying the behaviour and properties of materials on the nanoscale. This article describes a numerical algorithm that uses reverse Monte Carlo simulations to model scattering intensities observed on a two‐dimensional small‐angle scattering detector. |
doi_str_mv | 10.1107/S1600576722009219 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758353117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2746116601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743</originalsourceid><addsrcrecordid>eNqFkc1O3DAUhS1ExdChD8CmssSmm1BfO44nSzRqaatBSPxsuomc5Hpq5MRgJ0Wz4xF4xj5JHQ2gqixYWLaOv3Okew8hh8COAZj6fAkFY1IVinPGSg7lDtmfpGzSdv95z8j7GG8YgwndIzNRSMXS2Sf1CQ34G0NEeub7AelSB-epdmsf7PCro4On0Xaj0-lvuPd_Hh5b22Efre-1o7HTziVN92uHNDZ6GDDYfk1tykrQYDEekHdGu4gfnu45uf765Wr5LVudn35fnqyyJuc8zwxItkDBDRhUuVRGNlw0hrVQ543KFTdY1q1gShoUUtRKSDBaLMoaualVLubk0zb3Nvi7EeNQdTY26Jzu0Y-x4koukhFAJfToP_TGjyENNFF5AVAUDBIFW6oJPsaAproNttNhUwGrpgKqVwUkz8en5LHusH1xPG88AeUWuLcON28nVj-WF_z6p2QsF38BoDuS8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746116601</pqid></control><display><type>article</type><title>A reverse Monte Carlo algorithm to simulate two‐dimensional small‐angle scattering intensities</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Barnsley, Lester C. ; Nandakumaran, Nileena ; Feoktystov, Artem ; Dulle, Martin ; Fruhner, Lisa ; Feygenson, Mikhail</creator><creatorcontrib>Barnsley, Lester C. ; Nandakumaran, Nileena ; Feoktystov, Artem ; Dulle, Martin ; Fruhner, Lisa ; Feygenson, Mikhail</creatorcontrib><description>Small‐angle scattering (SAS) experiments are a powerful method for studying self‐assembly phenomena in nanoscopic materials because of the sensitivity of the technique to structures formed by interactions on the nanoscale. Numerous out‐of‐the‐box options exist for analysing structures measured by SAS but many of these are underpinned by assumptions about the underlying interactions that are not always relevant for a given system. Here, a numerical algorithm based on reverse Monte Carlo simulations is described to model the intensity observed on a SAS detector as a function of the scattering vector. The model simulates a two‐dimensional detector image, accounting for magnetic scattering, instrument resolution, particle polydispersity and particle collisions, while making no further assumptions about the underlying particle interactions. By simulating a two‐dimensional image that can be potentially anisotropic, the algorithm is particularly useful for studying systems driven by anisotropic interactions. The final output of the algorithm is a relative particle distribution, allowing visualization of particle structures that form over long‐range length scales (i.e. several hundred nanometres), along with an orientational distribution of magnetic moments. The effectiveness of the algorithm is shown by modelling a SAS experimental data set studying finite‐length chains consisting of magnetic nanoparticles, which assembled in the presence of a strong magnetic field due to dipole interactions.
Small‐angle neutron scattering and small‐angle X‐ray scattering are important experimental techniques for studying the behaviour and properties of materials on the nanoscale. This article describes a numerical algorithm that uses reverse Monte Carlo simulations to model scattering intensities observed on a two‐dimensional small‐angle scattering detector.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576722009219</identifier><identifier>PMID: 36570657</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Algorithms ; Anisotropy ; Computer simulation ; Dipole interactions ; Magnetic fields ; Magnetic moments ; magnetic nanoparticles ; Nanoparticles ; Numerical analysis ; Particle collisions ; Particle interactions ; Polydispersity ; reverse Monte Carlo simulations ; Scattering ; small‐angle neutron scattering ; small‐angle X‐ray scattering ; superparamagnetic iron oxide nanoparticles ; Wave dispersion</subject><ispartof>Journal of applied crystallography, 2022-12, Vol.55 (6), p.1592-1602</ispartof><rights>2022 Lester C. Barnsley et al. published by IUCr Journals.</rights><rights>Lester C. Barnsley et al. 2022.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743</citedby><cites>FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743</cites><orcidid>0000-0003-3647-4008 ; 0000-0003-2661-1021 ; 0000-0002-1341-905X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36570657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barnsley, Lester C.</creatorcontrib><creatorcontrib>Nandakumaran, Nileena</creatorcontrib><creatorcontrib>Feoktystov, Artem</creatorcontrib><creatorcontrib>Dulle, Martin</creatorcontrib><creatorcontrib>Fruhner, Lisa</creatorcontrib><creatorcontrib>Feygenson, Mikhail</creatorcontrib><title>A reverse Monte Carlo algorithm to simulate two‐dimensional small‐angle scattering intensities</title><title>Journal of applied crystallography</title><addtitle>J Appl Crystallogr</addtitle><description>Small‐angle scattering (SAS) experiments are a powerful method for studying self‐assembly phenomena in nanoscopic materials because of the sensitivity of the technique to structures formed by interactions on the nanoscale. Numerous out‐of‐the‐box options exist for analysing structures measured by SAS but many of these are underpinned by assumptions about the underlying interactions that are not always relevant for a given system. Here, a numerical algorithm based on reverse Monte Carlo simulations is described to model the intensity observed on a SAS detector as a function of the scattering vector. The model simulates a two‐dimensional detector image, accounting for magnetic scattering, instrument resolution, particle polydispersity and particle collisions, while making no further assumptions about the underlying particle interactions. By simulating a two‐dimensional image that can be potentially anisotropic, the algorithm is particularly useful for studying systems driven by anisotropic interactions. The final output of the algorithm is a relative particle distribution, allowing visualization of particle structures that form over long‐range length scales (i.e. several hundred nanometres), along with an orientational distribution of magnetic moments. The effectiveness of the algorithm is shown by modelling a SAS experimental data set studying finite‐length chains consisting of magnetic nanoparticles, which assembled in the presence of a strong magnetic field due to dipole interactions.
Small‐angle neutron scattering and small‐angle X‐ray scattering are important experimental techniques for studying the behaviour and properties of materials on the nanoscale. This article describes a numerical algorithm that uses reverse Monte Carlo simulations to model scattering intensities observed on a two‐dimensional small‐angle scattering detector.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Computer simulation</subject><subject>Dipole interactions</subject><subject>Magnetic fields</subject><subject>Magnetic moments</subject><subject>magnetic nanoparticles</subject><subject>Nanoparticles</subject><subject>Numerical analysis</subject><subject>Particle collisions</subject><subject>Particle interactions</subject><subject>Polydispersity</subject><subject>reverse Monte Carlo simulations</subject><subject>Scattering</subject><subject>small‐angle neutron scattering</subject><subject>small‐angle X‐ray scattering</subject><subject>superparamagnetic iron oxide nanoparticles</subject><subject>Wave dispersion</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1O3DAUhS1ExdChD8CmssSmm1BfO44nSzRqaatBSPxsuomc5Hpq5MRgJ0Wz4xF4xj5JHQ2gqixYWLaOv3Okew8hh8COAZj6fAkFY1IVinPGSg7lDtmfpGzSdv95z8j7GG8YgwndIzNRSMXS2Sf1CQ34G0NEeub7AelSB-epdmsf7PCro4On0Xaj0-lvuPd_Hh5b22Efre-1o7HTziVN92uHNDZ6GDDYfk1tykrQYDEekHdGu4gfnu45uf765Wr5LVudn35fnqyyJuc8zwxItkDBDRhUuVRGNlw0hrVQ543KFTdY1q1gShoUUtRKSDBaLMoaualVLubk0zb3Nvi7EeNQdTY26Jzu0Y-x4koukhFAJfToP_TGjyENNFF5AVAUDBIFW6oJPsaAproNttNhUwGrpgKqVwUkz8en5LHusH1xPG88AeUWuLcON28nVj-WF_z6p2QsF38BoDuS8g</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Barnsley, Lester C.</creator><creator>Nandakumaran, Nileena</creator><creator>Feoktystov, Artem</creator><creator>Dulle, Martin</creator><creator>Fruhner, Lisa</creator><creator>Feygenson, Mikhail</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3647-4008</orcidid><orcidid>https://orcid.org/0000-0003-2661-1021</orcidid><orcidid>https://orcid.org/0000-0002-1341-905X</orcidid></search><sort><creationdate>202212</creationdate><title>A reverse Monte Carlo algorithm to simulate two‐dimensional small‐angle scattering intensities</title><author>Barnsley, Lester C. ; Nandakumaran, Nileena ; Feoktystov, Artem ; Dulle, Martin ; Fruhner, Lisa ; Feygenson, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Computer simulation</topic><topic>Dipole interactions</topic><topic>Magnetic fields</topic><topic>Magnetic moments</topic><topic>magnetic nanoparticles</topic><topic>Nanoparticles</topic><topic>Numerical analysis</topic><topic>Particle collisions</topic><topic>Particle interactions</topic><topic>Polydispersity</topic><topic>reverse Monte Carlo simulations</topic><topic>Scattering</topic><topic>small‐angle neutron scattering</topic><topic>small‐angle X‐ray scattering</topic><topic>superparamagnetic iron oxide nanoparticles</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnsley, Lester C.</creatorcontrib><creatorcontrib>Nandakumaran, Nileena</creatorcontrib><creatorcontrib>Feoktystov, Artem</creatorcontrib><creatorcontrib>Dulle, Martin</creatorcontrib><creatorcontrib>Fruhner, Lisa</creatorcontrib><creatorcontrib>Feygenson, Mikhail</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnsley, Lester C.</au><au>Nandakumaran, Nileena</au><au>Feoktystov, Artem</au><au>Dulle, Martin</au><au>Fruhner, Lisa</au><au>Feygenson, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A reverse Monte Carlo algorithm to simulate two‐dimensional small‐angle scattering intensities</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J Appl Crystallogr</addtitle><date>2022-12</date><risdate>2022</risdate><volume>55</volume><issue>6</issue><spage>1592</spage><epage>1602</epage><pages>1592-1602</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Small‐angle scattering (SAS) experiments are a powerful method for studying self‐assembly phenomena in nanoscopic materials because of the sensitivity of the technique to structures formed by interactions on the nanoscale. Numerous out‐of‐the‐box options exist for analysing structures measured by SAS but many of these are underpinned by assumptions about the underlying interactions that are not always relevant for a given system. Here, a numerical algorithm based on reverse Monte Carlo simulations is described to model the intensity observed on a SAS detector as a function of the scattering vector. The model simulates a two‐dimensional detector image, accounting for magnetic scattering, instrument resolution, particle polydispersity and particle collisions, while making no further assumptions about the underlying particle interactions. By simulating a two‐dimensional image that can be potentially anisotropic, the algorithm is particularly useful for studying systems driven by anisotropic interactions. The final output of the algorithm is a relative particle distribution, allowing visualization of particle structures that form over long‐range length scales (i.e. several hundred nanometres), along with an orientational distribution of magnetic moments. The effectiveness of the algorithm is shown by modelling a SAS experimental data set studying finite‐length chains consisting of magnetic nanoparticles, which assembled in the presence of a strong magnetic field due to dipole interactions.
Small‐angle neutron scattering and small‐angle X‐ray scattering are important experimental techniques for studying the behaviour and properties of materials on the nanoscale. This article describes a numerical algorithm that uses reverse Monte Carlo simulations to model scattering intensities observed on a two‐dimensional small‐angle scattering detector.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>36570657</pmid><doi>10.1107/S1600576722009219</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3647-4008</orcidid><orcidid>https://orcid.org/0000-0003-2661-1021</orcidid><orcidid>https://orcid.org/0000-0002-1341-905X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-5767 |
ispartof | Journal of applied crystallography, 2022-12, Vol.55 (6), p.1592-1602 |
issn | 1600-5767 0021-8898 1600-5767 |
language | eng |
recordid | cdi_proquest_miscellaneous_2758353117 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Anisotropy Computer simulation Dipole interactions Magnetic fields Magnetic moments magnetic nanoparticles Nanoparticles Numerical analysis Particle collisions Particle interactions Polydispersity reverse Monte Carlo simulations Scattering small‐angle neutron scattering small‐angle X‐ray scattering superparamagnetic iron oxide nanoparticles Wave dispersion |
title | A reverse Monte Carlo algorithm to simulate two‐dimensional small‐angle scattering intensities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20reverse%20Monte%20Carlo%20algorithm%20to%20simulate%20two%E2%80%90dimensional%20small%E2%80%90angle%20scattering%20intensities&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Barnsley,%20Lester%20C.&rft.date=2022-12&rft.volume=55&rft.issue=6&rft.spage=1592&rft.epage=1602&rft.pages=1592-1602&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576722009219&rft_dat=%3Cproquest_cross%3E2746116601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4224-f1508e32f1fe7457f5c23cf0d1b4c7472fe9bd3075fe353b7351fa389be2fb743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2746116601&rft_id=info:pmid/36570657&rfr_iscdi=true |