Loading…
Analysis of numerical results in high temperature congealment and chemistry non-equilibrium flow field
Using the air plasma ignition technique, physicochemical process of burning can be accelerated; concentration limit of retrofires both can be extended; reliability of retrofires and stability of burning can be improved. In this paper, using internal equivalent heat area in place of electric arc that...
Saved in:
Published in: | Journal of marine science and application 2002-06, Vol.1 (1), p.26-34 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1255-cd94a06358a02093c0e3f27c6d7780119110a22dae78cd6d38eb2a8f289093803 |
container_end_page | 34 |
container_issue | 1 |
container_start_page | 26 |
container_title | Journal of marine science and application |
container_volume | 1 |
creator | Zheng, Hong-tao Tan, Zhi-yong Sun, Hai-ou Zhou, Chun-liang Li, Zhi-ming |
description | Using the air plasma ignition technique, physicochemical process of burning can be accelerated; concentration limit of retrofires both can be extended; reliability of retrofires and stability of burning can be improved. In this paper, using internal equivalent heat area in place of electric arc that created Ohm heat, the flow fields of thermodynamic equilibrium chemistry congealment and chemistry non-equilibrium in the plasma generator were simulated. The influences of the inlet prerotation angle of air, the inlet total pressure of air and the airflow compression angle of spray nozzle on the temperature on the surface of electrode nearby the electrode spot and the average temperature of outlet of spray nozzle were contrasted and analyzed. Considering the chemistry non-equilibrium flow, the change of temperature on the surface of electrode after ablation of electrode was further studied. As a result, when the internal flow field of plasma generator was calculated, if the computation model of congealment flow was used, although the parameter change rules were consistent with those of chemistry non-equilibrium, the results had much difference with the chemistry non-equilibrium. So the results of the computation of congealment flow cannot be completely used in quantitative analysis. |
doi_str_mv | 10.1007/BF02921413 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27584965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18616147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1255-cd94a06358a02093c0e3f27c6d7780119110a22dae78cd6d38eb2a8f289093803</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgCtbqxV8QEDwIq_nYzcexFqtCwYuelzQ726Zks22yQfrv3aIgePE0c3h4GeZF6JqSe0qIfHhcEKYZLSk_QROqNS8qUqrTcReSFrrk_BxdpLQlREjB-QS1s2D8IbmE-xaH3EF01ngcIWU_JOwC3rj1Bg_Q7SCaIUfAtg9rML6DMGATGmw30Lk0xAMOfShgn513q-hyh1vff-LWgW8u0VlrfIKrnzlFH4un9_lLsXx7fp3PloWlrKoK2-jSEMErZQgjmlsCvGXSikZKRSjVlBLDWGNAKtuIhitYMaNapvSoFeFTdPudu4v9PkMa6vE0C96bAH1ONZOVKrWo_oVUCSpoKUd48wdu-xzHpx3DlGSlGj87qrtvZWOfUoS23kXXmXioKamPzdS_zfAvR51_7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787248671</pqid></control><display><type>article</type><title>Analysis of numerical results in high temperature congealment and chemistry non-equilibrium flow field</title><source>Springer Nature</source><creator>Zheng, Hong-tao ; Tan, Zhi-yong ; Sun, Hai-ou ; Zhou, Chun-liang ; Li, Zhi-ming</creator><creatorcontrib>Zheng, Hong-tao ; Tan, Zhi-yong ; Sun, Hai-ou ; Zhou, Chun-liang ; Li, Zhi-ming</creatorcontrib><description>Using the air plasma ignition technique, physicochemical process of burning can be accelerated; concentration limit of retrofires both can be extended; reliability of retrofires and stability of burning can be improved. In this paper, using internal equivalent heat area in place of electric arc that created Ohm heat, the flow fields of thermodynamic equilibrium chemistry congealment and chemistry non-equilibrium in the plasma generator were simulated. The influences of the inlet prerotation angle of air, the inlet total pressure of air and the airflow compression angle of spray nozzle on the temperature on the surface of electrode nearby the electrode spot and the average temperature of outlet of spray nozzle were contrasted and analyzed. Considering the chemistry non-equilibrium flow, the change of temperature on the surface of electrode after ablation of electrode was further studied. As a result, when the internal flow field of plasma generator was calculated, if the computation model of congealment flow was used, although the parameter change rules were consistent with those of chemistry non-equilibrium, the results had much difference with the chemistry non-equilibrium. So the results of the computation of congealment flow cannot be completely used in quantitative analysis.</description><identifier>ISSN: 1671-9433</identifier><identifier>EISSN: 1993-5048</identifier><identifier>DOI: 10.1007/BF02921413</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Ablation ; Air ; Air flow ; Air plasma ; Brackish ; Chemistry ; Compression ; Computation ; Electrodes ; Equilibrium ; Freshwater ; High temperature ; Internal flow ; Marine ; Nonequilibrium flow ; Physicochemical processes ; Plasma generators ; Spray nozzles ; Temperature ; Thermodynamic equilibrium</subject><ispartof>Journal of marine science and application, 2002-06, Vol.1 (1), p.26-34</ispartof><rights>Harbin Engineering University 2002.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1255-cd94a06358a02093c0e3f27c6d7780119110a22dae78cd6d38eb2a8f289093803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zheng, Hong-tao</creatorcontrib><creatorcontrib>Tan, Zhi-yong</creatorcontrib><creatorcontrib>Sun, Hai-ou</creatorcontrib><creatorcontrib>Zhou, Chun-liang</creatorcontrib><creatorcontrib>Li, Zhi-ming</creatorcontrib><title>Analysis of numerical results in high temperature congealment and chemistry non-equilibrium flow field</title><title>Journal of marine science and application</title><description>Using the air plasma ignition technique, physicochemical process of burning can be accelerated; concentration limit of retrofires both can be extended; reliability of retrofires and stability of burning can be improved. In this paper, using internal equivalent heat area in place of electric arc that created Ohm heat, the flow fields of thermodynamic equilibrium chemistry congealment and chemistry non-equilibrium in the plasma generator were simulated. The influences of the inlet prerotation angle of air, the inlet total pressure of air and the airflow compression angle of spray nozzle on the temperature on the surface of electrode nearby the electrode spot and the average temperature of outlet of spray nozzle were contrasted and analyzed. Considering the chemistry non-equilibrium flow, the change of temperature on the surface of electrode after ablation of electrode was further studied. As a result, when the internal flow field of plasma generator was calculated, if the computation model of congealment flow was used, although the parameter change rules were consistent with those of chemistry non-equilibrium, the results had much difference with the chemistry non-equilibrium. So the results of the computation of congealment flow cannot be completely used in quantitative analysis.</description><subject>Ablation</subject><subject>Air</subject><subject>Air flow</subject><subject>Air plasma</subject><subject>Brackish</subject><subject>Chemistry</subject><subject>Compression</subject><subject>Computation</subject><subject>Electrodes</subject><subject>Equilibrium</subject><subject>Freshwater</subject><subject>High temperature</subject><subject>Internal flow</subject><subject>Marine</subject><subject>Nonequilibrium flow</subject><subject>Physicochemical processes</subject><subject>Plasma generators</subject><subject>Spray nozzles</subject><subject>Temperature</subject><subject>Thermodynamic equilibrium</subject><issn>1671-9433</issn><issn>1993-5048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LAzEQBuAgCtbqxV8QEDwIq_nYzcexFqtCwYuelzQ726Zks22yQfrv3aIgePE0c3h4GeZF6JqSe0qIfHhcEKYZLSk_QROqNS8qUqrTcReSFrrk_BxdpLQlREjB-QS1s2D8IbmE-xaH3EF01ngcIWU_JOwC3rj1Bg_Q7SCaIUfAtg9rML6DMGATGmw30Lk0xAMOfShgn513q-hyh1vff-LWgW8u0VlrfIKrnzlFH4un9_lLsXx7fp3PloWlrKoK2-jSEMErZQgjmlsCvGXSikZKRSjVlBLDWGNAKtuIhitYMaNapvSoFeFTdPudu4v9PkMa6vE0C96bAH1ONZOVKrWo_oVUCSpoKUd48wdu-xzHpx3DlGSlGj87qrtvZWOfUoS23kXXmXioKamPzdS_zfAvR51_7Q</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Zheng, Hong-tao</creator><creator>Tan, Zhi-yong</creator><creator>Sun, Hai-ou</creator><creator>Zhou, Chun-liang</creator><creator>Li, Zhi-ming</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>7TB</scope></search><sort><creationdate>20020601</creationdate><title>Analysis of numerical results in high temperature congealment and chemistry non-equilibrium flow field</title><author>Zheng, Hong-tao ; Tan, Zhi-yong ; Sun, Hai-ou ; Zhou, Chun-liang ; Li, Zhi-ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1255-cd94a06358a02093c0e3f27c6d7780119110a22dae78cd6d38eb2a8f289093803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Ablation</topic><topic>Air</topic><topic>Air flow</topic><topic>Air plasma</topic><topic>Brackish</topic><topic>Chemistry</topic><topic>Compression</topic><topic>Computation</topic><topic>Electrodes</topic><topic>Equilibrium</topic><topic>Freshwater</topic><topic>High temperature</topic><topic>Internal flow</topic><topic>Marine</topic><topic>Nonequilibrium flow</topic><topic>Physicochemical processes</topic><topic>Plasma generators</topic><topic>Spray nozzles</topic><topic>Temperature</topic><topic>Thermodynamic equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hong-tao</creatorcontrib><creatorcontrib>Tan, Zhi-yong</creatorcontrib><creatorcontrib>Sun, Hai-ou</creatorcontrib><creatorcontrib>Zhou, Chun-liang</creatorcontrib><creatorcontrib>Li, Zhi-ming</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><jtitle>Journal of marine science and application</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hong-tao</au><au>Tan, Zhi-yong</au><au>Sun, Hai-ou</au><au>Zhou, Chun-liang</au><au>Li, Zhi-ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of numerical results in high temperature congealment and chemistry non-equilibrium flow field</atitle><jtitle>Journal of marine science and application</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>1</volume><issue>1</issue><spage>26</spage><epage>34</epage><pages>26-34</pages><issn>1671-9433</issn><eissn>1993-5048</eissn><abstract>Using the air plasma ignition technique, physicochemical process of burning can be accelerated; concentration limit of retrofires both can be extended; reliability of retrofires and stability of burning can be improved. In this paper, using internal equivalent heat area in place of electric arc that created Ohm heat, the flow fields of thermodynamic equilibrium chemistry congealment and chemistry non-equilibrium in the plasma generator were simulated. The influences of the inlet prerotation angle of air, the inlet total pressure of air and the airflow compression angle of spray nozzle on the temperature on the surface of electrode nearby the electrode spot and the average temperature of outlet of spray nozzle were contrasted and analyzed. Considering the chemistry non-equilibrium flow, the change of temperature on the surface of electrode after ablation of electrode was further studied. As a result, when the internal flow field of plasma generator was calculated, if the computation model of congealment flow was used, although the parameter change rules were consistent with those of chemistry non-equilibrium, the results had much difference with the chemistry non-equilibrium. So the results of the computation of congealment flow cannot be completely used in quantitative analysis.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02921413</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-9433 |
ispartof | Journal of marine science and application, 2002-06, Vol.1 (1), p.26-34 |
issn | 1671-9433 1993-5048 |
language | eng |
recordid | cdi_proquest_miscellaneous_27584965 |
source | Springer Nature |
subjects | Ablation Air Air flow Air plasma Brackish Chemistry Compression Computation Electrodes Equilibrium Freshwater High temperature Internal flow Marine Nonequilibrium flow Physicochemical processes Plasma generators Spray nozzles Temperature Thermodynamic equilibrium |
title | Analysis of numerical results in high temperature congealment and chemistry non-equilibrium flow field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20numerical%20results%20in%20high%20temperature%20congealment%20and%20chemistry%20non-equilibrium%20flow%20field&rft.jtitle=Journal%20of%20marine%20science%20and%20application&rft.au=Zheng,%20Hong-tao&rft.date=2002-06-01&rft.volume=1&rft.issue=1&rft.spage=26&rft.epage=34&rft.pages=26-34&rft.issn=1671-9433&rft.eissn=1993-5048&rft_id=info:doi/10.1007/BF02921413&rft_dat=%3Cproquest_cross%3E18616147%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1255-cd94a06358a02093c0e3f27c6d7780119110a22dae78cd6d38eb2a8f289093803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787248671&rft_id=info:pmid/&rfr_iscdi=true |