Loading…

Numerical simulation of quantum effects in high-k gate dielectric MOS structures using quantum mechanical models

In this paper the electrical characteristics of metal oxide semiconductor (MOS) capacitors with high-k gate dielectric are investigated with quantum mechanical models. Both the self-consistent Schrödinger–Poisson (SP) model and the density gradient (DG) model are solved simultaneously to study quant...

Full description

Saved in:
Bibliographic Details
Published in:Computer physics communications 2002-08, Vol.147 (1), p.214-217
Main Authors: Li, Yiming, Lee, Jam-Wem, Tang, Ting-Wei, Chao, Tien-Sheng, Lei, Tan-Fu, Sze, S.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-7f78d09496eeeeac5da54002f2cceabca4f36fb2ef365f6d4d05b46dfe6488733
cites cdi_FETCH-LOGICAL-c434t-7f78d09496eeeeac5da54002f2cceabca4f36fb2ef365f6d4d05b46dfe6488733
container_end_page 217
container_issue 1
container_start_page 214
container_title Computer physics communications
container_volume 147
creator Li, Yiming
Lee, Jam-Wem
Tang, Ting-Wei
Chao, Tien-Sheng
Lei, Tan-Fu
Sze, S.M.
description In this paper the electrical characteristics of metal oxide semiconductor (MOS) capacitors with high-k gate dielectric are investigated with quantum mechanical models. Both the self-consistent Schrödinger–Poisson (SP) model and the density gradient (DG) model are solved simultaneously to study quantum confinement effects (QCEs) for MOS capacitors. A computationally efficient parallel eigenvalue solution algorithm and a robust monotone iterative (MI) finite volume (FV) scheme for the SP and DG models are systematically proposed and successfully implemented on a Linux cluster, respectively. With the developed simulator, we can extract the effective gate oxide thickness from capacitance voltage (C-V) measurements for TaN and Al gate NMOS capacitors with Z r O 2 and S i O 2 gate dielectric materials. We found that quantization effects of 5.0 nm Z r O 2 MOS samples cannot be directly equivalent to commonly quoted effects of 1.5 nm S i O 2 MOS samples. Achieved benchmarks are also included to demonstrate excellent performances of the proposed computational techniques.
doi_str_mv 10.1016/S0010-4655(02)00248-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27585321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465502002485</els_id><sourcerecordid>27585321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-7f78d09496eeeeac5da54002f2cceabca4f36fb2ef365f6d4d05b46dfe6488733</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWC-PIGSj6GI0M5PMZSVSvEHVhboOaXLSRufS5kwE397Ylro0mwPh-8_h_wg5SdllytLi6pWxlCW8EOKcZReMZbxKxA4ZpVVZJ1nN-S4ZbZF9coD4wRgryzofkcVzaME7rRqKrg2NGlzf0d7SZVDdEFoK1oIekLqOzt1snnzSmRqAGgdN_I9J-vTySnHwQQ_BA9KArptt4y3ouepW-9veQINHZM-qBuF4Mw_J-93t2_ghmbzcP45vJonmOR-S0paVYTWvC4hPaWGU4LGazbQGNdWK27yw0wziELYw3DAx5YWxUPCqKvP8kJyt9y58vwyAg2wdamga1UEfUGalqESepREUa1D7HtGDlQvvWuW_Zcrkr1-58it_5UmWyZVfKWLudHNAYaxnveq0w79wXgnBOI_c9ZqL5eHLgZeoHXQajPPRoDS9--fSD2S2kfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27585321</pqid></control><display><type>article</type><title>Numerical simulation of quantum effects in high-k gate dielectric MOS structures using quantum mechanical models</title><source>ScienceDirect Freedom Collection</source><creator>Li, Yiming ; Lee, Jam-Wem ; Tang, Ting-Wei ; Chao, Tien-Sheng ; Lei, Tan-Fu ; Sze, S.M.</creator><creatorcontrib>Li, Yiming ; Lee, Jam-Wem ; Tang, Ting-Wei ; Chao, Tien-Sheng ; Lei, Tan-Fu ; Sze, S.M.</creatorcontrib><description>In this paper the electrical characteristics of metal oxide semiconductor (MOS) capacitors with high-k gate dielectric are investigated with quantum mechanical models. Both the self-consistent Schrödinger–Poisson (SP) model and the density gradient (DG) model are solved simultaneously to study quantum confinement effects (QCEs) for MOS capacitors. A computationally efficient parallel eigenvalue solution algorithm and a robust monotone iterative (MI) finite volume (FV) scheme for the SP and DG models are systematically proposed and successfully implemented on a Linux cluster, respectively. With the developed simulator, we can extract the effective gate oxide thickness from capacitance voltage (C-V) measurements for TaN and Al gate NMOS capacitors with Z r O 2 and S i O 2 gate dielectric materials. We found that quantization effects of 5.0 nm Z r O 2 MOS samples cannot be directly equivalent to commonly quoted effects of 1.5 nm S i O 2 MOS samples. Achieved benchmarks are also included to demonstrate excellent performances of the proposed computational techniques.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/S0010-4655(02)00248-5</identifier><identifier>CODEN: CPHCBZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; High-k dielectric ; Miscellaneous ; MOS capacitor ; Numerical methods ; Quantum mechanical models ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductor-device characterization, design, and modeling</subject><ispartof>Computer physics communications, 2002-08, Vol.147 (1), p.214-217</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-7f78d09496eeeeac5da54002f2cceabca4f36fb2ef365f6d4d05b46dfe6488733</citedby><cites>FETCH-LOGICAL-c434t-7f78d09496eeeeac5da54002f2cceabca4f36fb2ef365f6d4d05b46dfe6488733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13855044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yiming</creatorcontrib><creatorcontrib>Lee, Jam-Wem</creatorcontrib><creatorcontrib>Tang, Ting-Wei</creatorcontrib><creatorcontrib>Chao, Tien-Sheng</creatorcontrib><creatorcontrib>Lei, Tan-Fu</creatorcontrib><creatorcontrib>Sze, S.M.</creatorcontrib><title>Numerical simulation of quantum effects in high-k gate dielectric MOS structures using quantum mechanical models</title><title>Computer physics communications</title><description>In this paper the electrical characteristics of metal oxide semiconductor (MOS) capacitors with high-k gate dielectric are investigated with quantum mechanical models. Both the self-consistent Schrödinger–Poisson (SP) model and the density gradient (DG) model are solved simultaneously to study quantum confinement effects (QCEs) for MOS capacitors. A computationally efficient parallel eigenvalue solution algorithm and a robust monotone iterative (MI) finite volume (FV) scheme for the SP and DG models are systematically proposed and successfully implemented on a Linux cluster, respectively. With the developed simulator, we can extract the effective gate oxide thickness from capacitance voltage (C-V) measurements for TaN and Al gate NMOS capacitors with Z r O 2 and S i O 2 gate dielectric materials. We found that quantization effects of 5.0 nm Z r O 2 MOS samples cannot be directly equivalent to commonly quoted effects of 1.5 nm S i O 2 MOS samples. Achieved benchmarks are also included to demonstrate excellent performances of the proposed computational techniques.</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>High-k dielectric</subject><subject>Miscellaneous</subject><subject>MOS capacitor</subject><subject>Numerical methods</subject><subject>Quantum mechanical models</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductor-device characterization, design, and modeling</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWC-PIGSj6GI0M5PMZSVSvEHVhboOaXLSRufS5kwE397Ylro0mwPh-8_h_wg5SdllytLi6pWxlCW8EOKcZReMZbxKxA4ZpVVZJ1nN-S4ZbZF9coD4wRgryzofkcVzaME7rRqKrg2NGlzf0d7SZVDdEFoK1oIekLqOzt1snnzSmRqAGgdN_I9J-vTySnHwQQ_BA9KArptt4y3ouepW-9veQINHZM-qBuF4Mw_J-93t2_ghmbzcP45vJonmOR-S0paVYTWvC4hPaWGU4LGazbQGNdWK27yw0wziELYw3DAx5YWxUPCqKvP8kJyt9y58vwyAg2wdamga1UEfUGalqESepREUa1D7HtGDlQvvWuW_Zcrkr1-58it_5UmWyZVfKWLudHNAYaxnveq0w79wXgnBOI_c9ZqL5eHLgZeoHXQajPPRoDS9--fSD2S2kfY</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Li, Yiming</creator><creator>Lee, Jam-Wem</creator><creator>Tang, Ting-Wei</creator><creator>Chao, Tien-Sheng</creator><creator>Lei, Tan-Fu</creator><creator>Sze, S.M.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20020801</creationdate><title>Numerical simulation of quantum effects in high-k gate dielectric MOS structures using quantum mechanical models</title><author>Li, Yiming ; Lee, Jam-Wem ; Tang, Ting-Wei ; Chao, Tien-Sheng ; Lei, Tan-Fu ; Sze, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-7f78d09496eeeeac5da54002f2cceabca4f36fb2ef365f6d4d05b46dfe6488733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>High-k dielectric</topic><topic>Miscellaneous</topic><topic>MOS capacitor</topic><topic>Numerical methods</topic><topic>Quantum mechanical models</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductor-device characterization, design, and modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yiming</creatorcontrib><creatorcontrib>Lee, Jam-Wem</creatorcontrib><creatorcontrib>Tang, Ting-Wei</creatorcontrib><creatorcontrib>Chao, Tien-Sheng</creatorcontrib><creatorcontrib>Lei, Tan-Fu</creatorcontrib><creatorcontrib>Sze, S.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yiming</au><au>Lee, Jam-Wem</au><au>Tang, Ting-Wei</au><au>Chao, Tien-Sheng</au><au>Lei, Tan-Fu</au><au>Sze, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of quantum effects in high-k gate dielectric MOS structures using quantum mechanical models</atitle><jtitle>Computer physics communications</jtitle><date>2002-08-01</date><risdate>2002</risdate><volume>147</volume><issue>1</issue><spage>214</spage><epage>217</epage><pages>214-217</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><coden>CPHCBZ</coden><abstract>In this paper the electrical characteristics of metal oxide semiconductor (MOS) capacitors with high-k gate dielectric are investigated with quantum mechanical models. Both the self-consistent Schrödinger–Poisson (SP) model and the density gradient (DG) model are solved simultaneously to study quantum confinement effects (QCEs) for MOS capacitors. A computationally efficient parallel eigenvalue solution algorithm and a robust monotone iterative (MI) finite volume (FV) scheme for the SP and DG models are systematically proposed and successfully implemented on a Linux cluster, respectively. With the developed simulator, we can extract the effective gate oxide thickness from capacitance voltage (C-V) measurements for TaN and Al gate NMOS capacitors with Z r O 2 and S i O 2 gate dielectric materials. We found that quantization effects of 5.0 nm Z r O 2 MOS samples cannot be directly equivalent to commonly quoted effects of 1.5 nm S i O 2 MOS samples. Achieved benchmarks are also included to demonstrate excellent performances of the proposed computational techniques.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0010-4655(02)00248-5</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2002-08, Vol.147 (1), p.214-217
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_27585321
source ScienceDirect Freedom Collection
subjects Applied sciences
Electronics
Exact sciences and technology
High-k dielectric
Miscellaneous
MOS capacitor
Numerical methods
Quantum mechanical models
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductor-device characterization, design, and modeling
title Numerical simulation of quantum effects in high-k gate dielectric MOS structures using quantum mechanical models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20quantum%20effects%20in%20high-k%20gate%20dielectric%20MOS%20structures%20using%20quantum%20mechanical%20models&rft.jtitle=Computer%20physics%20communications&rft.au=Li,%20Yiming&rft.date=2002-08-01&rft.volume=147&rft.issue=1&rft.spage=214&rft.epage=217&rft.pages=214-217&rft.issn=0010-4655&rft.eissn=1879-2944&rft.coden=CPHCBZ&rft_id=info:doi/10.1016/S0010-4655(02)00248-5&rft_dat=%3Cproquest_cross%3E27585321%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-7f78d09496eeeeac5da54002f2cceabca4f36fb2ef365f6d4d05b46dfe6488733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27585321&rft_id=info:pmid/&rfr_iscdi=true