Loading…
Silicon–Aluminum Phase-Transformation-Induced Superconducting Rings
The development of devices that exhibit both superconducting and semiconducting properties is an important endeavor for emerging quantum technologies. We investigate superconducting nanowires fabricated on a silicon-on-insulator (SOI) platform. Aluminum from deposited contact electrodes is found to...
Saved in:
Published in: | Nano letters 2023-01, Vol.23 (1), p.17-24 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of devices that exhibit both superconducting and semiconducting properties is an important endeavor for emerging quantum technologies. We investigate superconducting nanowires fabricated on a silicon-on-insulator (SOI) platform. Aluminum from deposited contact electrodes is found to interdiffuse with Si along the entire length of the nanowire, over micrometer length scales and at temperatures well below the Al–Si eutectic. The phase-transformed material is conformal with the predefined device patterns. The superconducting properties of a transformed mesoscopic ring formed on a SOI platform are investigated. Low-temperature magnetoresistance oscillations, quantized in units of the fluxoid, h/2e, are observed. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.2c02814 |