Loading…

Multidimensional quasi-eigenfunction approximations and multicomponent AM-FM models

We develop multicomponent AM-FM models for multidimensional signals. The analysis is cast in a general n-dimensional framework where the component modulating functions are assumed to lie in certain Sobolev spaces. For both continuous and discrete linear shift invariant (LSI) systems with AM-FM input...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2000-02, Vol.9 (2), p.227-242
Main Authors: Havlicek, J.P., Harding, D.S., Bovik, A.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-e0fddec3dcc750c992deccb6229c66131611ae6b37b515ccb491760dfaeeb31b3
cites cdi_FETCH-LOGICAL-c486t-e0fddec3dcc750c992deccb6229c66131611ae6b37b515ccb491760dfaeeb31b3
container_end_page 242
container_issue 2
container_start_page 227
container_title IEEE transactions on image processing
container_volume 9
creator Havlicek, J.P.
Harding, D.S.
Bovik, A.C.
description We develop multicomponent AM-FM models for multidimensional signals. The analysis is cast in a general n-dimensional framework where the component modulating functions are assumed to lie in certain Sobolev spaces. For both continuous and discrete linear shift invariant (LSI) systems with AM-FM inputs, powerful new approximations are introduced that provide closed form expressions for the responses in terms of the input modulations. The approximation errors are bounded by generalized energy variances quantifying the localization of the filter impulse response and by Sobolev norms quantifying the smoothness of the modulations. The approximations are then used to develop novel spatially localized demodulation algorithms that estimate the AM and FM functions for multiple signal components simultaneously from the channel responses of a multiband linear filterbank used to isolate components. Two discrete computational paradigms are presented. Dominant component analysis estimates the locally dominant modulations in a signal, which are useful in a variety of machine vision applications, while channelized components analysis delivers a true multidimensional multicomponent signal representation. We demonstrate the techniques on several images of general interest in practical applications, and obtain reconstructions that establish the validity of characterizing images of this type as sums of locally narrowband modulated components.
doi_str_mv 10.1109/83.821736
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_27589151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>821736</ieee_id><sourcerecordid>28375610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-e0fddec3dcc750c992deccb6229c66131611ae6b37b515ccb491760dfaeeb31b3</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa2qqNBtD71yqKKqKuIQ6rHjryNCUJB21QP0HDnOBBklzhInEvz3dbQRSBzYkz0zP7-x3iPkG9AzAGp-a36mGSguP5AjMAXklBbsY7pToXIFhTkkn2N8oBQKAfITOQTNhOCGHpHbzdSOvvYdhuj7YNvscbLR5-jvMTRTcGPqZna7Hfon39m5ipkNddbN71zfbfuAYczON_nVJuv6Gtv4hRw0to34dTlX5N_V5d3Fdb7---fm4nydu0LLMUfa1DU6XjunBHXGsFS5SjJmnJTAQQJYlBVXlQCRJoUBJWndWMSKQ8VX5GSnmz73OGEcy85Hh21rA_ZTLA0Ukgsl2F5S8QK05Gnpivx6l2SaKyGB7geV0AbErPjjDfjQT0NyOpZaJyOUEipBpzvIDX2MAzbldkh2D88l0HLOuNS83GWc2O-L4FR1WL-SS6gJ-LkANjrbNoMNzsdXjmkFat55vMM8Ir5MlyX_AQcHtgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884867757</pqid></control><display><type>article</type><title>Multidimensional quasi-eigenfunction approximations and multicomponent AM-FM models</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Havlicek, J.P. ; Harding, D.S. ; Bovik, A.C.</creator><creatorcontrib>Havlicek, J.P. ; Harding, D.S. ; Bovik, A.C.</creatorcontrib><description>We develop multicomponent AM-FM models for multidimensional signals. The analysis is cast in a general n-dimensional framework where the component modulating functions are assumed to lie in certain Sobolev spaces. For both continuous and discrete linear shift invariant (LSI) systems with AM-FM inputs, powerful new approximations are introduced that provide closed form expressions for the responses in terms of the input modulations. The approximation errors are bounded by generalized energy variances quantifying the localization of the filter impulse response and by Sobolev norms quantifying the smoothness of the modulations. The approximations are then used to develop novel spatially localized demodulation algorithms that estimate the AM and FM functions for multiple signal components simultaneously from the channel responses of a multiband linear filterbank used to isolate components. Two discrete computational paradigms are presented. Dominant component analysis estimates the locally dominant modulations in a signal, which are useful in a variety of machine vision applications, while channelized components analysis delivers a true multidimensional multicomponent signal representation. We demonstrate the techniques on several images of general interest in practical applications, and obtain reconstructions that establish the validity of characterizing images of this type as sums of locally narrowband modulated components.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.821736</identifier><identifier>PMID: 18255390</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation ; Approximation error ; Channels ; Demodulation ; Estimates ; Exact sciences and technology ; Filter bank ; Image processing ; Impulse response ; Information, signal and communications theory ; Large scale integration ; Machine vision ; Mathematical analysis ; Mathematical models ; Modulation ; Multidimensional systems ; Nonlinear filters ; Power system modeling ; Signal analysis ; Signal processing ; Signal representations ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2000-02, Vol.9 (2), p.227-242</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-e0fddec3dcc750c992deccb6229c66131611ae6b37b515ccb491760dfaeeb31b3</citedby><cites>FETCH-LOGICAL-c486t-e0fddec3dcc750c992deccb6229c66131611ae6b37b515ccb491760dfaeeb31b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/821736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1287177$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18255390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Havlicek, J.P.</creatorcontrib><creatorcontrib>Harding, D.S.</creatorcontrib><creatorcontrib>Bovik, A.C.</creatorcontrib><title>Multidimensional quasi-eigenfunction approximations and multicomponent AM-FM models</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We develop multicomponent AM-FM models for multidimensional signals. The analysis is cast in a general n-dimensional framework where the component modulating functions are assumed to lie in certain Sobolev spaces. For both continuous and discrete linear shift invariant (LSI) systems with AM-FM inputs, powerful new approximations are introduced that provide closed form expressions for the responses in terms of the input modulations. The approximation errors are bounded by generalized energy variances quantifying the localization of the filter impulse response and by Sobolev norms quantifying the smoothness of the modulations. The approximations are then used to develop novel spatially localized demodulation algorithms that estimate the AM and FM functions for multiple signal components simultaneously from the channel responses of a multiband linear filterbank used to isolate components. Two discrete computational paradigms are presented. Dominant component analysis estimates the locally dominant modulations in a signal, which are useful in a variety of machine vision applications, while channelized components analysis delivers a true multidimensional multicomponent signal representation. We demonstrate the techniques on several images of general interest in practical applications, and obtain reconstructions that establish the validity of characterizing images of this type as sums of locally narrowband modulated components.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation error</subject><subject>Channels</subject><subject>Demodulation</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Filter bank</subject><subject>Image processing</subject><subject>Impulse response</subject><subject>Information, signal and communications theory</subject><subject>Large scale integration</subject><subject>Machine vision</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modulation</subject><subject>Multidimensional systems</subject><subject>Nonlinear filters</subject><subject>Power system modeling</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Signal representations</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkc1P3DAQxa2qqNBtD71yqKKqKuIQ6rHjryNCUJB21QP0HDnOBBklzhInEvz3dbQRSBzYkz0zP7-x3iPkG9AzAGp-a36mGSguP5AjMAXklBbsY7pToXIFhTkkn2N8oBQKAfITOQTNhOCGHpHbzdSOvvYdhuj7YNvscbLR5-jvMTRTcGPqZna7Hfon39m5ipkNddbN71zfbfuAYczON_nVJuv6Gtv4hRw0to34dTlX5N_V5d3Fdb7---fm4nydu0LLMUfa1DU6XjunBHXGsFS5SjJmnJTAQQJYlBVXlQCRJoUBJWndWMSKQ8VX5GSnmz73OGEcy85Hh21rA_ZTLA0Ukgsl2F5S8QK05Gnpivx6l2SaKyGB7geV0AbErPjjDfjQT0NyOpZaJyOUEipBpzvIDX2MAzbldkh2D88l0HLOuNS83GWc2O-L4FR1WL-SS6gJ-LkANjrbNoMNzsdXjmkFat55vMM8Ir5MlyX_AQcHtgM</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Havlicek, J.P.</creator><creator>Harding, D.S.</creator><creator>Bovik, A.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000201</creationdate><title>Multidimensional quasi-eigenfunction approximations and multicomponent AM-FM models</title><author>Havlicek, J.P. ; Harding, D.S. ; Bovik, A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-e0fddec3dcc750c992deccb6229c66131611ae6b37b515ccb491760dfaeeb31b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation error</topic><topic>Channels</topic><topic>Demodulation</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Filter bank</topic><topic>Image processing</topic><topic>Impulse response</topic><topic>Information, signal and communications theory</topic><topic>Large scale integration</topic><topic>Machine vision</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modulation</topic><topic>Multidimensional systems</topic><topic>Nonlinear filters</topic><topic>Power system modeling</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Signal representations</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Havlicek, J.P.</creatorcontrib><creatorcontrib>Harding, D.S.</creatorcontrib><creatorcontrib>Bovik, A.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Havlicek, J.P.</au><au>Harding, D.S.</au><au>Bovik, A.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional quasi-eigenfunction approximations and multicomponent AM-FM models</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2000-02-01</date><risdate>2000</risdate><volume>9</volume><issue>2</issue><spage>227</spage><epage>242</epage><pages>227-242</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We develop multicomponent AM-FM models for multidimensional signals. The analysis is cast in a general n-dimensional framework where the component modulating functions are assumed to lie in certain Sobolev spaces. For both continuous and discrete linear shift invariant (LSI) systems with AM-FM inputs, powerful new approximations are introduced that provide closed form expressions for the responses in terms of the input modulations. The approximation errors are bounded by generalized energy variances quantifying the localization of the filter impulse response and by Sobolev norms quantifying the smoothness of the modulations. The approximations are then used to develop novel spatially localized demodulation algorithms that estimate the AM and FM functions for multiple signal components simultaneously from the channel responses of a multiband linear filterbank used to isolate components. Two discrete computational paradigms are presented. Dominant component analysis estimates the locally dominant modulations in a signal, which are useful in a variety of machine vision applications, while channelized components analysis delivers a true multidimensional multicomponent signal representation. We demonstrate the techniques on several images of general interest in practical applications, and obtain reconstructions that establish the validity of characterizing images of this type as sums of locally narrowband modulated components.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18255390</pmid><doi>10.1109/83.821736</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2000-02, Vol.9 (2), p.227-242
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_27589151
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Approximation
Approximation error
Channels
Demodulation
Estimates
Exact sciences and technology
Filter bank
Image processing
Impulse response
Information, signal and communications theory
Large scale integration
Machine vision
Mathematical analysis
Mathematical models
Modulation
Multidimensional systems
Nonlinear filters
Power system modeling
Signal analysis
Signal processing
Signal representations
Studies
Telecommunications and information theory
title Multidimensional quasi-eigenfunction approximations and multicomponent AM-FM models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20quasi-eigenfunction%20approximations%20and%20multicomponent%20AM-FM%20models&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Havlicek,%20J.P.&rft.date=2000-02-01&rft.volume=9&rft.issue=2&rft.spage=227&rft.epage=242&rft.pages=227-242&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.821736&rft_dat=%3Cproquest_pubme%3E28375610%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-e0fddec3dcc750c992deccb6229c66131611ae6b37b515ccb491760dfaeeb31b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884867757&rft_id=info:pmid/18255390&rft_ieee_id=821736&rfr_iscdi=true