Loading…
Marsdenia tenacissima genome reveals calcium adaptation and tenacissoside biosynthesis
SUMMARY Marsdenia tenacissima is a medicinal plant widely distributed in the calcium‐rich karst regions of southwest China. However, the lack of a reference genome has hampered the implementation of molecular techniques in its breeding, pharmacology and domestication. We generated the chromosome‐lev...
Saved in:
Published in: | The Plant journal : for cell and molecular biology 2023-03, Vol.113 (6), p.1146-1159 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3531-b34db78ccb7a65040e604e67486fb6e55818b598af85da7e6c8e7b39ffef93783 |
---|---|
cites | cdi_FETCH-LOGICAL-c3531-b34db78ccb7a65040e604e67486fb6e55818b598af85da7e6c8e7b39ffef93783 |
container_end_page | 1159 |
container_issue | 6 |
container_start_page | 1146 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 113 |
creator | Zhou, Yanli Fan, Wei Zhang, Haoyue Zhang, Jingling Zhang, Guanghui Wang, Ding Xiang, Guisheng Zhao, Changhong Li, Lianhua He, Simei Lu, Yingchun Zhao, Jiuxia Meng, Zhengui Zhang, Xianmin Meng, Hengling Yin, Xinhua Yang, Shengchao Long, Guangqiang |
description | SUMMARY
Marsdenia tenacissima is a medicinal plant widely distributed in the calcium‐rich karst regions of southwest China. However, the lack of a reference genome has hampered the implementation of molecular techniques in its breeding, pharmacology and domestication. We generated the chromosome‐level genome assembly in Apocynaceae using combined SMRT sequencing and Hi‐C. The genome length was 381.76 Mb, with 98.9% of it found on 11 chromosomes. The genome contained 222.63 Mb of repetitive sequences and 21 899 predicted gene models, with a contig N50 of 6.57 Mb. Phylogenetic analysis revealed that M. tenacissima diverged from Calotropis gigantea at least 13.43 million years ago. Comparative genomics showed that M. tenacissima underwent ancient shared whole‐genome duplication. This event, together with tandem duplication, contributed to 70.71% of gene‐family expansion. Both pseudogene analysis and selective pressure calculations suggested calcium‐related adaptive evolution in the M. tenacissima genome. Calcium‐induced differentially expressed genes (DEGs) were mainly enriched in cell‐wall‐related processes. Domains (e.g. Fasciclin and Amb_all) and cis‐elements (e.g. MYB and MYC) frequently occurred in the coding and promoter regions of cell‐wall DEGs, respectively, and the expression levels of these genes correlated significantly with those of calcium‐signal‐related transcription factors. Moreover, calcium addition increased tenacissoside I, G and H contents. The availability of this high‐quality genome provides valuable genomic information for genetic breeding and molecular design, and lends insights into the calcium adaptation of M. tenacissima in karst areas.
Significance Statement
This study provide chromosome‐level genome sequence of Marsdenia tenacissima. We provide insights into calcium adaptation of plant species in Karst areas. This study put forward putative tenacissoside biosynthesis. |
doi_str_mv | 10.1111/tpj.16081 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2759001549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759001549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3531-b34db78ccb7a65040e604e67486fb6e55818b598af85da7e6c8e7b39ffef93783</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1q7jm8jqriqCIaC2CLHOQFXuRQ7AfXtMaR0QMLLWb7z6_hH6JjgMQlv0q6WY8KxJDtoSChnMSX0ZRcNseI4FgmZDtCB90uMiaA82UeDYARjQg3R8712Pofa6qiFWhvrva109Ap1U0Hk4AN06SOjS2O7KtK5XrW6tU0d6TrfbjTe5hBltvHrun0Db_0h2ivCIhxt5gg9XV0uZjfx_OH6dnYxjw1llMQZTfJMSGMyoTnDCQaOE-AikbzIODAmicyYkrqQLNcCuJEgMqqKAgpFhaQjdNbnrlzz3oFv08p6A2Wpa2g6n04FU-HbLFGBnv6hy6ZzdbguKMmlUgqzoM57ZVzjvYMiXblQiFunBKffZaeh7PSn7GBPNoldVkG-lb_tBjDpwactYf1_Urp4vOsjvwCO9InR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786899905</pqid></control><display><type>article</type><title>Marsdenia tenacissima genome reveals calcium adaptation and tenacissoside biosynthesis</title><source>Wiley-Blackwell Read & Publish Collection</source><source>EZB Electronic Journals Library</source><creator>Zhou, Yanli ; Fan, Wei ; Zhang, Haoyue ; Zhang, Jingling ; Zhang, Guanghui ; Wang, Ding ; Xiang, Guisheng ; Zhao, Changhong ; Li, Lianhua ; He, Simei ; Lu, Yingchun ; Zhao, Jiuxia ; Meng, Zhengui ; Zhang, Xianmin ; Meng, Hengling ; Yin, Xinhua ; Yang, Shengchao ; Long, Guangqiang</creator><creatorcontrib>Zhou, Yanli ; Fan, Wei ; Zhang, Haoyue ; Zhang, Jingling ; Zhang, Guanghui ; Wang, Ding ; Xiang, Guisheng ; Zhao, Changhong ; Li, Lianhua ; He, Simei ; Lu, Yingchun ; Zhao, Jiuxia ; Meng, Zhengui ; Zhang, Xianmin ; Meng, Hengling ; Yin, Xinhua ; Yang, Shengchao ; Long, Guangqiang</creatorcontrib><description>SUMMARY
Marsdenia tenacissima is a medicinal plant widely distributed in the calcium‐rich karst regions of southwest China. However, the lack of a reference genome has hampered the implementation of molecular techniques in its breeding, pharmacology and domestication. We generated the chromosome‐level genome assembly in Apocynaceae using combined SMRT sequencing and Hi‐C. The genome length was 381.76 Mb, with 98.9% of it found on 11 chromosomes. The genome contained 222.63 Mb of repetitive sequences and 21 899 predicted gene models, with a contig N50 of 6.57 Mb. Phylogenetic analysis revealed that M. tenacissima diverged from Calotropis gigantea at least 13.43 million years ago. Comparative genomics showed that M. tenacissima underwent ancient shared whole‐genome duplication. This event, together with tandem duplication, contributed to 70.71% of gene‐family expansion. Both pseudogene analysis and selective pressure calculations suggested calcium‐related adaptive evolution in the M. tenacissima genome. Calcium‐induced differentially expressed genes (DEGs) were mainly enriched in cell‐wall‐related processes. Domains (e.g. Fasciclin and Amb_all) and cis‐elements (e.g. MYB and MYC) frequently occurred in the coding and promoter regions of cell‐wall DEGs, respectively, and the expression levels of these genes correlated significantly with those of calcium‐signal‐related transcription factors. Moreover, calcium addition increased tenacissoside I, G and H contents. The availability of this high‐quality genome provides valuable genomic information for genetic breeding and molecular design, and lends insights into the calcium adaptation of M. tenacissima in karst areas.
Significance Statement
This study provide chromosome‐level genome sequence of Marsdenia tenacissima. We provide insights into calcium adaptation of plant species in Karst areas. This study put forward putative tenacissoside biosynthesis.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.16081</identifier><identifier>PMID: 36575579</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adaptation ; Apocynaceae ; Biosynthesis ; Breeding ; Ca2+ adaptation ; Calcium ; Calcium signalling ; cell‐wall remodeling ; Chromosomes ; DNA sequencing ; Domestication ; Evolution & development ; Evolutionary genetics ; Gene expression ; Genes ; genome assembly ; Genomes ; Genomics ; Herbal medicine ; Hi‐C ; Karst ; Marsdenia ; Marsdenia - genetics ; Marsdenia tenacissima ; Medicinal plants ; Myc protein ; Pharmacology ; Phylogeny ; Plant Breeding ; Plants, Medicinal ; Reproduction (copying) ; Transcription factors</subject><ispartof>The Plant journal : for cell and molecular biology, 2023-03, Vol.113 (6), p.1146-1159</ispartof><rights>2022 Society for Experimental Biology and John Wiley & Sons Ltd.</rights><rights>Copyright © 2023 Society for Experimental Biology and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3531-b34db78ccb7a65040e604e67486fb6e55818b598af85da7e6c8e7b39ffef93783</citedby><cites>FETCH-LOGICAL-c3531-b34db78ccb7a65040e604e67486fb6e55818b598af85da7e6c8e7b39ffef93783</cites><orcidid>0000-0001-9147-4399 ; 0000-0002-4008-4590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36575579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yanli</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Zhang, Haoyue</creatorcontrib><creatorcontrib>Zhang, Jingling</creatorcontrib><creatorcontrib>Zhang, Guanghui</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Xiang, Guisheng</creatorcontrib><creatorcontrib>Zhao, Changhong</creatorcontrib><creatorcontrib>Li, Lianhua</creatorcontrib><creatorcontrib>He, Simei</creatorcontrib><creatorcontrib>Lu, Yingchun</creatorcontrib><creatorcontrib>Zhao, Jiuxia</creatorcontrib><creatorcontrib>Meng, Zhengui</creatorcontrib><creatorcontrib>Zhang, Xianmin</creatorcontrib><creatorcontrib>Meng, Hengling</creatorcontrib><creatorcontrib>Yin, Xinhua</creatorcontrib><creatorcontrib>Yang, Shengchao</creatorcontrib><creatorcontrib>Long, Guangqiang</creatorcontrib><title>Marsdenia tenacissima genome reveals calcium adaptation and tenacissoside biosynthesis</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY
Marsdenia tenacissima is a medicinal plant widely distributed in the calcium‐rich karst regions of southwest China. However, the lack of a reference genome has hampered the implementation of molecular techniques in its breeding, pharmacology and domestication. We generated the chromosome‐level genome assembly in Apocynaceae using combined SMRT sequencing and Hi‐C. The genome length was 381.76 Mb, with 98.9% of it found on 11 chromosomes. The genome contained 222.63 Mb of repetitive sequences and 21 899 predicted gene models, with a contig N50 of 6.57 Mb. Phylogenetic analysis revealed that M. tenacissima diverged from Calotropis gigantea at least 13.43 million years ago. Comparative genomics showed that M. tenacissima underwent ancient shared whole‐genome duplication. This event, together with tandem duplication, contributed to 70.71% of gene‐family expansion. Both pseudogene analysis and selective pressure calculations suggested calcium‐related adaptive evolution in the M. tenacissima genome. Calcium‐induced differentially expressed genes (DEGs) were mainly enriched in cell‐wall‐related processes. Domains (e.g. Fasciclin and Amb_all) and cis‐elements (e.g. MYB and MYC) frequently occurred in the coding and promoter regions of cell‐wall DEGs, respectively, and the expression levels of these genes correlated significantly with those of calcium‐signal‐related transcription factors. Moreover, calcium addition increased tenacissoside I, G and H contents. The availability of this high‐quality genome provides valuable genomic information for genetic breeding and molecular design, and lends insights into the calcium adaptation of M. tenacissima in karst areas.
Significance Statement
This study provide chromosome‐level genome sequence of Marsdenia tenacissima. We provide insights into calcium adaptation of plant species in Karst areas. This study put forward putative tenacissoside biosynthesis.</description><subject>Adaptation</subject><subject>Apocynaceae</subject><subject>Biosynthesis</subject><subject>Breeding</subject><subject>Ca2+ adaptation</subject><subject>Calcium</subject><subject>Calcium signalling</subject><subject>cell‐wall remodeling</subject><subject>Chromosomes</subject><subject>DNA sequencing</subject><subject>Domestication</subject><subject>Evolution & development</subject><subject>Evolutionary genetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>genome assembly</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Herbal medicine</subject><subject>Hi‐C</subject><subject>Karst</subject><subject>Marsdenia</subject><subject>Marsdenia - genetics</subject><subject>Marsdenia tenacissima</subject><subject>Medicinal plants</subject><subject>Myc protein</subject><subject>Pharmacology</subject><subject>Phylogeny</subject><subject>Plant Breeding</subject><subject>Plants, Medicinal</subject><subject>Reproduction (copying)</subject><subject>Transcription factors</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1q7jm8jqriqCIaC2CLHOQFXuRQ7AfXtMaR0QMLLWb7z6_hH6JjgMQlv0q6WY8KxJDtoSChnMSX0ZRcNseI4FgmZDtCB90uMiaA82UeDYARjQg3R8712Pofa6qiFWhvrva109Ap1U0Hk4AN06SOjS2O7KtK5XrW6tU0d6TrfbjTe5hBltvHrun0Db_0h2ivCIhxt5gg9XV0uZjfx_OH6dnYxjw1llMQZTfJMSGMyoTnDCQaOE-AikbzIODAmicyYkrqQLNcCuJEgMqqKAgpFhaQjdNbnrlzz3oFv08p6A2Wpa2g6n04FU-HbLFGBnv6hy6ZzdbguKMmlUgqzoM57ZVzjvYMiXblQiFunBKffZaeh7PSn7GBPNoldVkG-lb_tBjDpwactYf1_Urp4vOsjvwCO9InR</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Zhou, Yanli</creator><creator>Fan, Wei</creator><creator>Zhang, Haoyue</creator><creator>Zhang, Jingling</creator><creator>Zhang, Guanghui</creator><creator>Wang, Ding</creator><creator>Xiang, Guisheng</creator><creator>Zhao, Changhong</creator><creator>Li, Lianhua</creator><creator>He, Simei</creator><creator>Lu, Yingchun</creator><creator>Zhao, Jiuxia</creator><creator>Meng, Zhengui</creator><creator>Zhang, Xianmin</creator><creator>Meng, Hengling</creator><creator>Yin, Xinhua</creator><creator>Yang, Shengchao</creator><creator>Long, Guangqiang</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9147-4399</orcidid><orcidid>https://orcid.org/0000-0002-4008-4590</orcidid></search><sort><creationdate>202303</creationdate><title>Marsdenia tenacissima genome reveals calcium adaptation and tenacissoside biosynthesis</title><author>Zhou, Yanli ; Fan, Wei ; Zhang, Haoyue ; Zhang, Jingling ; Zhang, Guanghui ; Wang, Ding ; Xiang, Guisheng ; Zhao, Changhong ; Li, Lianhua ; He, Simei ; Lu, Yingchun ; Zhao, Jiuxia ; Meng, Zhengui ; Zhang, Xianmin ; Meng, Hengling ; Yin, Xinhua ; Yang, Shengchao ; Long, Guangqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3531-b34db78ccb7a65040e604e67486fb6e55818b598af85da7e6c8e7b39ffef93783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Apocynaceae</topic><topic>Biosynthesis</topic><topic>Breeding</topic><topic>Ca2+ adaptation</topic><topic>Calcium</topic><topic>Calcium signalling</topic><topic>cell‐wall remodeling</topic><topic>Chromosomes</topic><topic>DNA sequencing</topic><topic>Domestication</topic><topic>Evolution & development</topic><topic>Evolutionary genetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>genome assembly</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Herbal medicine</topic><topic>Hi‐C</topic><topic>Karst</topic><topic>Marsdenia</topic><topic>Marsdenia - genetics</topic><topic>Marsdenia tenacissima</topic><topic>Medicinal plants</topic><topic>Myc protein</topic><topic>Pharmacology</topic><topic>Phylogeny</topic><topic>Plant Breeding</topic><topic>Plants, Medicinal</topic><topic>Reproduction (copying)</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yanli</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Zhang, Haoyue</creatorcontrib><creatorcontrib>Zhang, Jingling</creatorcontrib><creatorcontrib>Zhang, Guanghui</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Xiang, Guisheng</creatorcontrib><creatorcontrib>Zhao, Changhong</creatorcontrib><creatorcontrib>Li, Lianhua</creatorcontrib><creatorcontrib>He, Simei</creatorcontrib><creatorcontrib>Lu, Yingchun</creatorcontrib><creatorcontrib>Zhao, Jiuxia</creatorcontrib><creatorcontrib>Meng, Zhengui</creatorcontrib><creatorcontrib>Zhang, Xianmin</creatorcontrib><creatorcontrib>Meng, Hengling</creatorcontrib><creatorcontrib>Yin, Xinhua</creatorcontrib><creatorcontrib>Yang, Shengchao</creatorcontrib><creatorcontrib>Long, Guangqiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yanli</au><au>Fan, Wei</au><au>Zhang, Haoyue</au><au>Zhang, Jingling</au><au>Zhang, Guanghui</au><au>Wang, Ding</au><au>Xiang, Guisheng</au><au>Zhao, Changhong</au><au>Li, Lianhua</au><au>He, Simei</au><au>Lu, Yingchun</au><au>Zhao, Jiuxia</au><au>Meng, Zhengui</au><au>Zhang, Xianmin</au><au>Meng, Hengling</au><au>Yin, Xinhua</au><au>Yang, Shengchao</au><au>Long, Guangqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marsdenia tenacissima genome reveals calcium adaptation and tenacissoside biosynthesis</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2023-03</date><risdate>2023</risdate><volume>113</volume><issue>6</issue><spage>1146</spage><epage>1159</epage><pages>1146-1159</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY
Marsdenia tenacissima is a medicinal plant widely distributed in the calcium‐rich karst regions of southwest China. However, the lack of a reference genome has hampered the implementation of molecular techniques in its breeding, pharmacology and domestication. We generated the chromosome‐level genome assembly in Apocynaceae using combined SMRT sequencing and Hi‐C. The genome length was 381.76 Mb, with 98.9% of it found on 11 chromosomes. The genome contained 222.63 Mb of repetitive sequences and 21 899 predicted gene models, with a contig N50 of 6.57 Mb. Phylogenetic analysis revealed that M. tenacissima diverged from Calotropis gigantea at least 13.43 million years ago. Comparative genomics showed that M. tenacissima underwent ancient shared whole‐genome duplication. This event, together with tandem duplication, contributed to 70.71% of gene‐family expansion. Both pseudogene analysis and selective pressure calculations suggested calcium‐related adaptive evolution in the M. tenacissima genome. Calcium‐induced differentially expressed genes (DEGs) were mainly enriched in cell‐wall‐related processes. Domains (e.g. Fasciclin and Amb_all) and cis‐elements (e.g. MYB and MYC) frequently occurred in the coding and promoter regions of cell‐wall DEGs, respectively, and the expression levels of these genes correlated significantly with those of calcium‐signal‐related transcription factors. Moreover, calcium addition increased tenacissoside I, G and H contents. The availability of this high‐quality genome provides valuable genomic information for genetic breeding and molecular design, and lends insights into the calcium adaptation of M. tenacissima in karst areas.
Significance Statement
This study provide chromosome‐level genome sequence of Marsdenia tenacissima. We provide insights into calcium adaptation of plant species in Karst areas. This study put forward putative tenacissoside biosynthesis.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>36575579</pmid><doi>10.1111/tpj.16081</doi><tpages>1159</tpages><orcidid>https://orcid.org/0000-0001-9147-4399</orcidid><orcidid>https://orcid.org/0000-0002-4008-4590</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2023-03, Vol.113 (6), p.1146-1159 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_2759001549 |
source | Wiley-Blackwell Read & Publish Collection; EZB Electronic Journals Library |
subjects | Adaptation Apocynaceae Biosynthesis Breeding Ca2+ adaptation Calcium Calcium signalling cell‐wall remodeling Chromosomes DNA sequencing Domestication Evolution & development Evolutionary genetics Gene expression Genes genome assembly Genomes Genomics Herbal medicine Hi‐C Karst Marsdenia Marsdenia - genetics Marsdenia tenacissima Medicinal plants Myc protein Pharmacology Phylogeny Plant Breeding Plants, Medicinal Reproduction (copying) Transcription factors |
title | Marsdenia tenacissima genome reveals calcium adaptation and tenacissoside biosynthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marsdenia%20tenacissima%20genome%20reveals%20calcium%20adaptation%20and%20tenacissoside%20biosynthesis&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Zhou,%20Yanli&rft.date=2023-03&rft.volume=113&rft.issue=6&rft.spage=1146&rft.epage=1159&rft.pages=1146-1159&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.16081&rft_dat=%3Cproquest_cross%3E2759001549%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3531-b34db78ccb7a65040e604e67486fb6e55818b598af85da7e6c8e7b39ffef93783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786899905&rft_id=info:pmid/36575579&rfr_iscdi=true |