Loading…

Martian soil and UV radiation: microbial viability assessment on spacecraft surfaces

Terrestrial microbes may reach the surface of Mars via inadequately sterilized spacecraft landers, rovers, or through accidental impact of orbiters. This investigation was initiated to determine if Martian dust could protect spores of Bacillus subtilis on spacecraft surfaces from the UV radiation th...

Full description

Saved in:
Bibliographic Details
Published in:Planetary and space science 2000-09, Vol.48 (11), p.1093-1097
Main Authors: Mancinelli, Rocco L, Klovstad, Melisa
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Terrestrial microbes may reach the surface of Mars via inadequately sterilized spacecraft landers, rovers, or through accidental impact of orbiters. This investigation was initiated to determine if Martian dust could protect spores of Bacillus subtilis on spacecraft surfaces from the UV radiation that falls onto the Martian surface. A monolayer of washed spores of Bacillus subtilis strain HA 101 were placed onto the surface of aluminum coupons and dried at 30°C for 18 h. After drying dust prepared from sieved simulated Mars soil standard (Mars JSC-1 obtained from NASA Johnson Space Center, Houston, Texas, USA), or Fe-montmorillonite was placed on top of the spore monolayer of some of the coupons to a thickness of either 1 mm, 0.5 mm, 100 or 12 μm . The coupons were then exposed to UV radiation from a deuterium lamp (Oriel model 6316) and samples collected periodically to determine survival. The total number of surviving spores was determined using the most probable number (MPN) method. As a control, samples were prepared in triplicate as described above except that the coupons were not exposed to UV radiation. The data indicate that an unprotected monolayer of spores will be killed within minutes when exposed to the UV radiation flux falling onto the surface of Mars, but that if they are covered by either an additional layer of spores or a few microns of dust they will survive for long periods of time. This implies that spore-forming microbes on spacecraft surfaces can be protected by a thin layer of Mars dust and can potentially contaminate the planet.
ISSN:0032-0633
1873-5088
DOI:10.1016/S0032-0633(00)00083-0