Loading…

Backbone Engineering Enables Highly Efficient Polymer Hole‐Transporting Materials for Inverted Perovskite Solar Cells

The interface and crystallinity of perovskite films play a decisive role in determining the device performance, which is significantly influenced by the bottom hole‐transporting material (HTM) of inverted perovskite solar cells (PVSCs). Herein, a simple design strategy of polymer HTMs is reported, w...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2023-03, Vol.35 (12), p.e2208431-n/a
Main Authors: Wu, Xin, Gao, Danpeng, Sun, Xianglang, Zhang, Shoufeng, Wang, Qi, Li, Bo, Li, Zhen, Qin, Minchao, Jiang, Xiaofen, Zhang, Chunlei, Li, Zhuo, Lu, Xinhui, Li, Nan, Xiao, Shuang, Zhong, Xiaoyan, Yang, Shangfeng, Li, Zhong'an, Zhu, Zonglong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3731-f2ed66091796a7afad8f3169b10771511e8c50e3234cffc295163bc84acfe7663
cites cdi_FETCH-LOGICAL-c3731-f2ed66091796a7afad8f3169b10771511e8c50e3234cffc295163bc84acfe7663
container_end_page n/a
container_issue 12
container_start_page e2208431
container_title Advanced materials (Weinheim)
container_volume 35
creator Wu, Xin
Gao, Danpeng
Sun, Xianglang
Zhang, Shoufeng
Wang, Qi
Li, Bo
Li, Zhen
Qin, Minchao
Jiang, Xiaofen
Zhang, Chunlei
Li, Zhuo
Lu, Xinhui
Li, Nan
Xiao, Shuang
Zhong, Xiaoyan
Yang, Shangfeng
Li, Zhong'an
Zhu, Zonglong
description The interface and crystallinity of perovskite films play a decisive role in determining the device performance, which is significantly influenced by the bottom hole‐transporting material (HTM) of inverted perovskite solar cells (PVSCs). Herein, a simple design strategy of polymer HTMs is reported, which can modulate the wettability and promote the anchoring by introducing pyridine units into the polyarylamine backbone, so as to realize efficient and stable inverted PVSCs. The HTM properties can be effectively modified by varying the linkage sites of pyridine units, and 3,5‐linked PTAA‐P1 particularly demonstrates a more regulated molecular configuration for interacting with perovskites, leading to highly crystalline perovskite films with uniform back contact and reduced defect density. Dopant‐free PTAA‐P1‐based inverted PVSCs have realized remarkable efficiencies of 24.89% (certified value: 24.50%) for small‐area (0.08 cm2) as well as 23.12% for large‐area (1 cm2) devices. Moreover, the unencapsulated device maintains over 93% of its initial efficiency after 800 h of maximum power point tracking under simulated AM 1.5G illumination. A new pyridine‐based polymer hole‐transporting material is developed through backbone engineering strategy to simultaneously modulate the interface and crystallinity of inverted perovskite solar cells, resulting in a remarkable power conversion efficiency of 24.89% (certified 24.50%) with outstanding stability.
doi_str_mv 10.1002/adma.202208431
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2759957790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789615154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-f2ed66091796a7afad8f3169b10771511e8c50e3234cffc295163bc84acfe7663</originalsourceid><addsrcrecordid>eNqFkc1uEzEURi0EoqGwZYkssWEzwT9je7wMaSCVWlGJsh55PNdhWo8d7Emr7HgEnpEnwVFKkdiwundxvnOv9CH0mpI5JYS9N_1o5owwRpqa0ydoRgWjVU20eIpmRHNRaVk3J-hFzjeEEC2JfI5OuBSN0ITN0P0HY2-7GACvwmYIAGkIm7KbzkPG62Hzze_xyrnBDhAmfBX9foSE19HDrx8_r5MJeRvTdAhdmqmkjc_YxYTPwx2kCXp8BSne5dthAvwlepPwErzPL9EzV1B49TBP0dePq-vlurr4_Ol8ubioLFecVo5BLyXRVGlplHGmbxynUneUKEUFpdBYQYAzXlvnLNOCSt7ZpjbWgZKSn6J3R-82xe87yFM7DtmWD0yAuMstU0JroZQmBX37D3oTdymU7wrVaFnOibpQ8yNlU8w5gWu3aRhN2reUtIdK2kMl7WMlJfDmQbvrRugf8T8dFEAfgfvBw_4_unZxdrn4K_8NQO2Zbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789615154</pqid></control><display><type>article</type><title>Backbone Engineering Enables Highly Efficient Polymer Hole‐Transporting Materials for Inverted Perovskite Solar Cells</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wu, Xin ; Gao, Danpeng ; Sun, Xianglang ; Zhang, Shoufeng ; Wang, Qi ; Li, Bo ; Li, Zhen ; Qin, Minchao ; Jiang, Xiaofen ; Zhang, Chunlei ; Li, Zhuo ; Lu, Xinhui ; Li, Nan ; Xiao, Shuang ; Zhong, Xiaoyan ; Yang, Shangfeng ; Li, Zhong'an ; Zhu, Zonglong</creator><creatorcontrib>Wu, Xin ; Gao, Danpeng ; Sun, Xianglang ; Zhang, Shoufeng ; Wang, Qi ; Li, Bo ; Li, Zhen ; Qin, Minchao ; Jiang, Xiaofen ; Zhang, Chunlei ; Li, Zhuo ; Lu, Xinhui ; Li, Nan ; Xiao, Shuang ; Zhong, Xiaoyan ; Yang, Shangfeng ; Li, Zhong'an ; Zhu, Zonglong</creatorcontrib><description>The interface and crystallinity of perovskite films play a decisive role in determining the device performance, which is significantly influenced by the bottom hole‐transporting material (HTM) of inverted perovskite solar cells (PVSCs). Herein, a simple design strategy of polymer HTMs is reported, which can modulate the wettability and promote the anchoring by introducing pyridine units into the polyarylamine backbone, so as to realize efficient and stable inverted PVSCs. The HTM properties can be effectively modified by varying the linkage sites of pyridine units, and 3,5‐linked PTAA‐P1 particularly demonstrates a more regulated molecular configuration for interacting with perovskites, leading to highly crystalline perovskite films with uniform back contact and reduced defect density. Dopant‐free PTAA‐P1‐based inverted PVSCs have realized remarkable efficiencies of 24.89% (certified value: 24.50%) for small‐area (0.08 cm2) as well as 23.12% for large‐area (1 cm2) devices. Moreover, the unencapsulated device maintains over 93% of its initial efficiency after 800 h of maximum power point tracking under simulated AM 1.5G illumination. A new pyridine‐based polymer hole‐transporting material is developed through backbone engineering strategy to simultaneously modulate the interface and crystallinity of inverted perovskite solar cells, resulting in a remarkable power conversion efficiency of 24.89% (certified 24.50%) with outstanding stability.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202208431</identifier><identifier>PMID: 36585902</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>backbone engineering ; Crystal defects ; crystallinity ; hole‐transporting materials ; interface modulation ; inverted perovskite solar cells ; Materials science ; Maximum power tracking ; Perovskites ; Photovoltaic cells ; Polymers ; Pyridines ; Solar cells ; Wettability</subject><ispartof>Advanced materials (Weinheim), 2023-03, Vol.35 (12), p.e2208431-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-f2ed66091796a7afad8f3169b10771511e8c50e3234cffc295163bc84acfe7663</citedby><cites>FETCH-LOGICAL-c3731-f2ed66091796a7afad8f3169b10771511e8c50e3234cffc295163bc84acfe7663</cites><orcidid>0000-0002-8285-9665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36585902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Gao, Danpeng</creatorcontrib><creatorcontrib>Sun, Xianglang</creatorcontrib><creatorcontrib>Zhang, Shoufeng</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Qin, Minchao</creatorcontrib><creatorcontrib>Jiang, Xiaofen</creatorcontrib><creatorcontrib>Zhang, Chunlei</creatorcontrib><creatorcontrib>Li, Zhuo</creatorcontrib><creatorcontrib>Lu, Xinhui</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Xiao, Shuang</creatorcontrib><creatorcontrib>Zhong, Xiaoyan</creatorcontrib><creatorcontrib>Yang, Shangfeng</creatorcontrib><creatorcontrib>Li, Zhong'an</creatorcontrib><creatorcontrib>Zhu, Zonglong</creatorcontrib><title>Backbone Engineering Enables Highly Efficient Polymer Hole‐Transporting Materials for Inverted Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The interface and crystallinity of perovskite films play a decisive role in determining the device performance, which is significantly influenced by the bottom hole‐transporting material (HTM) of inverted perovskite solar cells (PVSCs). Herein, a simple design strategy of polymer HTMs is reported, which can modulate the wettability and promote the anchoring by introducing pyridine units into the polyarylamine backbone, so as to realize efficient and stable inverted PVSCs. The HTM properties can be effectively modified by varying the linkage sites of pyridine units, and 3,5‐linked PTAA‐P1 particularly demonstrates a more regulated molecular configuration for interacting with perovskites, leading to highly crystalline perovskite films with uniform back contact and reduced defect density. Dopant‐free PTAA‐P1‐based inverted PVSCs have realized remarkable efficiencies of 24.89% (certified value: 24.50%) for small‐area (0.08 cm2) as well as 23.12% for large‐area (1 cm2) devices. Moreover, the unencapsulated device maintains over 93% of its initial efficiency after 800 h of maximum power point tracking under simulated AM 1.5G illumination. A new pyridine‐based polymer hole‐transporting material is developed through backbone engineering strategy to simultaneously modulate the interface and crystallinity of inverted perovskite solar cells, resulting in a remarkable power conversion efficiency of 24.89% (certified 24.50%) with outstanding stability.</description><subject>backbone engineering</subject><subject>Crystal defects</subject><subject>crystallinity</subject><subject>hole‐transporting materials</subject><subject>interface modulation</subject><subject>inverted perovskite solar cells</subject><subject>Materials science</subject><subject>Maximum power tracking</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Pyridines</subject><subject>Solar cells</subject><subject>Wettability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uEzEURi0EoqGwZYkssWEzwT9je7wMaSCVWlGJsh55PNdhWo8d7Emr7HgEnpEnwVFKkdiwundxvnOv9CH0mpI5JYS9N_1o5owwRpqa0ydoRgWjVU20eIpmRHNRaVk3J-hFzjeEEC2JfI5OuBSN0ITN0P0HY2-7GACvwmYIAGkIm7KbzkPG62Hzze_xyrnBDhAmfBX9foSE19HDrx8_r5MJeRvTdAhdmqmkjc_YxYTPwx2kCXp8BSne5dthAvwlepPwErzPL9EzV1B49TBP0dePq-vlurr4_Ol8ubioLFecVo5BLyXRVGlplHGmbxynUneUKEUFpdBYQYAzXlvnLNOCSt7ZpjbWgZKSn6J3R-82xe87yFM7DtmWD0yAuMstU0JroZQmBX37D3oTdymU7wrVaFnOibpQ8yNlU8w5gWu3aRhN2reUtIdK2kMl7WMlJfDmQbvrRugf8T8dFEAfgfvBw_4_unZxdrn4K_8NQO2Zbw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wu, Xin</creator><creator>Gao, Danpeng</creator><creator>Sun, Xianglang</creator><creator>Zhang, Shoufeng</creator><creator>Wang, Qi</creator><creator>Li, Bo</creator><creator>Li, Zhen</creator><creator>Qin, Minchao</creator><creator>Jiang, Xiaofen</creator><creator>Zhang, Chunlei</creator><creator>Li, Zhuo</creator><creator>Lu, Xinhui</creator><creator>Li, Nan</creator><creator>Xiao, Shuang</creator><creator>Zhong, Xiaoyan</creator><creator>Yang, Shangfeng</creator><creator>Li, Zhong'an</creator><creator>Zhu, Zonglong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8285-9665</orcidid></search><sort><creationdate>20230301</creationdate><title>Backbone Engineering Enables Highly Efficient Polymer Hole‐Transporting Materials for Inverted Perovskite Solar Cells</title><author>Wu, Xin ; Gao, Danpeng ; Sun, Xianglang ; Zhang, Shoufeng ; Wang, Qi ; Li, Bo ; Li, Zhen ; Qin, Minchao ; Jiang, Xiaofen ; Zhang, Chunlei ; Li, Zhuo ; Lu, Xinhui ; Li, Nan ; Xiao, Shuang ; Zhong, Xiaoyan ; Yang, Shangfeng ; Li, Zhong'an ; Zhu, Zonglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-f2ed66091796a7afad8f3169b10771511e8c50e3234cffc295163bc84acfe7663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>backbone engineering</topic><topic>Crystal defects</topic><topic>crystallinity</topic><topic>hole‐transporting materials</topic><topic>interface modulation</topic><topic>inverted perovskite solar cells</topic><topic>Materials science</topic><topic>Maximum power tracking</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Pyridines</topic><topic>Solar cells</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Gao, Danpeng</creatorcontrib><creatorcontrib>Sun, Xianglang</creatorcontrib><creatorcontrib>Zhang, Shoufeng</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Qin, Minchao</creatorcontrib><creatorcontrib>Jiang, Xiaofen</creatorcontrib><creatorcontrib>Zhang, Chunlei</creatorcontrib><creatorcontrib>Li, Zhuo</creatorcontrib><creatorcontrib>Lu, Xinhui</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Xiao, Shuang</creatorcontrib><creatorcontrib>Zhong, Xiaoyan</creatorcontrib><creatorcontrib>Yang, Shangfeng</creatorcontrib><creatorcontrib>Li, Zhong'an</creatorcontrib><creatorcontrib>Zhu, Zonglong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xin</au><au>Gao, Danpeng</au><au>Sun, Xianglang</au><au>Zhang, Shoufeng</au><au>Wang, Qi</au><au>Li, Bo</au><au>Li, Zhen</au><au>Qin, Minchao</au><au>Jiang, Xiaofen</au><au>Zhang, Chunlei</au><au>Li, Zhuo</au><au>Lu, Xinhui</au><au>Li, Nan</au><au>Xiao, Shuang</au><au>Zhong, Xiaoyan</au><au>Yang, Shangfeng</au><au>Li, Zhong'an</au><au>Zhu, Zonglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backbone Engineering Enables Highly Efficient Polymer Hole‐Transporting Materials for Inverted Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>35</volume><issue>12</issue><spage>e2208431</spage><epage>n/a</epage><pages>e2208431-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The interface and crystallinity of perovskite films play a decisive role in determining the device performance, which is significantly influenced by the bottom hole‐transporting material (HTM) of inverted perovskite solar cells (PVSCs). Herein, a simple design strategy of polymer HTMs is reported, which can modulate the wettability and promote the anchoring by introducing pyridine units into the polyarylamine backbone, so as to realize efficient and stable inverted PVSCs. The HTM properties can be effectively modified by varying the linkage sites of pyridine units, and 3,5‐linked PTAA‐P1 particularly demonstrates a more regulated molecular configuration for interacting with perovskites, leading to highly crystalline perovskite films with uniform back contact and reduced defect density. Dopant‐free PTAA‐P1‐based inverted PVSCs have realized remarkable efficiencies of 24.89% (certified value: 24.50%) for small‐area (0.08 cm2) as well as 23.12% for large‐area (1 cm2) devices. Moreover, the unencapsulated device maintains over 93% of its initial efficiency after 800 h of maximum power point tracking under simulated AM 1.5G illumination. A new pyridine‐based polymer hole‐transporting material is developed through backbone engineering strategy to simultaneously modulate the interface and crystallinity of inverted perovskite solar cells, resulting in a remarkable power conversion efficiency of 24.89% (certified 24.50%) with outstanding stability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36585902</pmid><doi>10.1002/adma.202208431</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8285-9665</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-03, Vol.35 (12), p.e2208431-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2759957790
source Wiley-Blackwell Read & Publish Collection
subjects backbone engineering
Crystal defects
crystallinity
hole‐transporting materials
interface modulation
inverted perovskite solar cells
Materials science
Maximum power tracking
Perovskites
Photovoltaic cells
Polymers
Pyridines
Solar cells
Wettability
title Backbone Engineering Enables Highly Efficient Polymer Hole‐Transporting Materials for Inverted Perovskite Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backbone%20Engineering%20Enables%20Highly%20Efficient%20Polymer%20Hole%E2%80%90Transporting%20Materials%20for%20Inverted%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wu,%20Xin&rft.date=2023-03-01&rft.volume=35&rft.issue=12&rft.spage=e2208431&rft.epage=n/a&rft.pages=e2208431-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202208431&rft_dat=%3Cproquest_cross%3E2789615154%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3731-f2ed66091796a7afad8f3169b10771511e8c50e3234cffc295163bc84acfe7663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789615154&rft_id=info:pmid/36585902&rfr_iscdi=true