Loading…
MOTS-c and aerobic exercise induce cardiac physiological adaptation via NRG1/ErbB4/CEBPβ modification in rats
To determine the effects of the mitochondrial open reading frame of the 12S ribosomal RNA type-c (MOTS-c) and aerobic exercise on cardiac structure and function and explore the role of neuregulin-1 (NRG1)- ErbB2 receptor tyrosine kinase 4(ErbB4)- CCAAT-enhancer binding protein β (C/EBPβ) in cardiac...
Saved in:
Published in: | Life sciences (1973) 2023-02, Vol.315, p.121330-121330, Article 121330 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To determine the effects of the mitochondrial open reading frame of the 12S ribosomal RNA type-c (MOTS-c) and aerobic exercise on cardiac structure and function and explore the role of neuregulin-1 (NRG1)- ErbB2 receptor tyrosine kinase 4(ErbB4)- CCAAT-enhancer binding protein β (C/EBPβ) in cardiac physiological adaptation induced by MOTS-c and aerobic training.
We used Hematoxylin-Eosin staining(HE)and Transmission Electron Microscope (TEM) to observe the cardiac myocardial structure, carotid artery catheterization to test cardiac function, and real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting to describe the changes of NRG1, ErbB4, C/EBPβ, and Gata in cardiac physiological adaptation.
MOTS-c and aerobic training significantly increased heart weight and heart weight index (HWI) (all p |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2022.121330 |