Loading…
An overview of dynamical methods for studying transitions between states in sheared plasma flows
The self-organization of structures in a tokamak plasma as it undergoes an [Formula: see text]-mode transition shows properties similar to simpler shear flow configurations. We will describe recent dynamical studies of plasma shear flows, including the idea of tracking the edge of chaos that separat...
Saved in:
Published in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2023-02, Vol.381 (2242), p.20210238-20210238 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The self-organization of structures in a tokamak plasma as it undergoes an [Formula: see text]-mode transition shows properties similar to simpler shear flow configurations. We will describe recent dynamical studies of plasma shear flows, including the idea of tracking the edge of chaos that separates two bistable states, computing the nonlinear minimal seed that can lead to turbulence, finding the attractor solution on the edge and seeing how starting from this solution we can understand the stability of relative period orbits that permeate the turbulent basin of attraction. We present a modus operandi developed for these simple configurations that can be adapted to understand the [Formula: see text]-mode transition. This article is part of a discussion meeting issue 'H-mode transition and pedestal studies in fusion plasmas'. |
---|---|
ISSN: | 1364-503X 1471-2962 |
DOI: | 10.1098/rsta.2021.0238 |