Loading…
Implicit Boundary Conditions for Direct Simulation Monte Carlo Method in MEMS Flow Predictions
A simple implicit treatment for the low speed inflow and outflow boundary conditions for the direct simulation Monte Carlo (DSMC) of the flows in microelectromechanical systems (MEMS) is proposed. The local mean flow velocity, temperature, and number density near the subsonic boundaries were used to...
Saved in:
Published in: | Computer modeling in engineering & sciences 2000-01, Vol.1 (4), p.119-128 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A simple implicit treatment for the low speed inflow and outflow boundary conditions for the direct simulation Monte Carlo (DSMC) of the flows in microelectromechanical systems (MEMS) is proposed. The local mean flow velocity, temperature, and number density near the subsonic boundaries were used to determine the number of molecules entering the computational domain and their corresponding velocities at every sample average step. The proposed boundary conditions were validated against micro-Poiseuille flows and micro-Couette flows. The results were compared with analytical solutions derived from the Navier-Stokes equations using first-order and second order slip-boundary conditions. The results show that the implicit treatment of the subsonic flow boundaries is robust and appropriate for use in the DSMC of the flows in MEMS. |
---|---|
ISSN: | 1526-1492 1526-1506 |
DOI: | 10.3970/cmes.2000.001.571 |