Loading…
Artificial intelligence-based multi-omics analysis fuels cancer precision medicine
With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics ap...
Saved in:
Published in: | Seminars in cancer biology 2023-01, Vol.88, p.187-200 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03 |
container_end_page | 200 |
container_issue | |
container_start_page | 187 |
container_title | Seminars in cancer biology |
container_volume | 88 |
creator | He, Xiujing Liu, Xiaowei Zuo, Fengli Shi, Hubing Jing, Jing |
description | With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics approaches, have empowered to characterize different molecular layers at unprecedented scale and resolution, providing a holistic view of tumor behavior. Multi-omics analysis allows systematic interrogation of various molecular information at each biological layer while posing tricky challenges regarding how to extract valuable insights from the exponentially increasing amount of multi-omics data. Therefore, efficient algorithms are needed to reduce the dimensionality of the data while simultaneously dissecting the mysteries behind the complex biological processes of cancer. Artificial intelligence has demonstrated the ability to analyze complementary multi-modal data streams within the oncology realm. The coincident development of multi-omics technologies and artificial intelligence algorithms has fuelled the development of cancer precision medicine. Here, we present state-of-the-art omics technologies and outline a roadmap of multi-omics integration analysis using an artificial intelligence strategy. The advances made using artificial intelligence-based multi-omics approaches are described, especially concerning early cancer screening, diagnosis, response assessment, and prognosis prediction. Finally, we discuss the challenges faced in multi-omics analysis, along with tentative future trends in this field. With the increasing application of artificial intelligence in multi-omics analysis, we anticipate a shifting paradigm in precision medicine becoming driven by artificial intelligence-based multi-omics technologies. |
doi_str_mv | 10.1016/j.semcancer.2022.12.009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2760817446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044579X22002632</els_id><sourcerecordid>2760817446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03</originalsourceid><addsrcrecordid>eNqFkMtKxDAYhYMozjj6Ctqlm9YkzaVdDoM3GBBEwV1I0r-SoZcxaYV5e1M6unWVQM4l50PohuCMYCLudlmA1urOgs8opjQjNMO4PEFLgkuR5oLj0-nOWMpl-bFAFyHscFQwws7RIr6XIud0iV7XfnC1s043iesGaBr3CTE2NTpAlbRjM7i0b50Nie50cwguJPUITUjm9mTvwbrg-i5poYo5HVyis1o3Aa6O5wq9P9y_bZ7S7cvj82a9TS2jeEhraTS3QhqwRhDOLS1yDbyK-4zGnOW4IALn8atGiIJQYo0WTBaVhAKLCucrdDvn7n3_NUIYVOuCjQt0B_0YFJUiRkjGRJTKWWp9H4KHWu29a7U_KILVBFTt1B9QNQFVhKqIKzqvjyWjiQP_fL8Eo2A9CyIT-HbRHqybCFYukhlU1bt_S34AphiLuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760817446</pqid></control><display><type>article</type><title>Artificial intelligence-based multi-omics analysis fuels cancer precision medicine</title><source>Elsevier</source><creator>He, Xiujing ; Liu, Xiaowei ; Zuo, Fengli ; Shi, Hubing ; Jing, Jing</creator><creatorcontrib>He, Xiujing ; Liu, Xiaowei ; Zuo, Fengli ; Shi, Hubing ; Jing, Jing</creatorcontrib><description>With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics approaches, have empowered to characterize different molecular layers at unprecedented scale and resolution, providing a holistic view of tumor behavior. Multi-omics analysis allows systematic interrogation of various molecular information at each biological layer while posing tricky challenges regarding how to extract valuable insights from the exponentially increasing amount of multi-omics data. Therefore, efficient algorithms are needed to reduce the dimensionality of the data while simultaneously dissecting the mysteries behind the complex biological processes of cancer. Artificial intelligence has demonstrated the ability to analyze complementary multi-modal data streams within the oncology realm. The coincident development of multi-omics technologies and artificial intelligence algorithms has fuelled the development of cancer precision medicine. Here, we present state-of-the-art omics technologies and outline a roadmap of multi-omics integration analysis using an artificial intelligence strategy. The advances made using artificial intelligence-based multi-omics approaches are described, especially concerning early cancer screening, diagnosis, response assessment, and prognosis prediction. Finally, we discuss the challenges faced in multi-omics analysis, along with tentative future trends in this field. With the increasing application of artificial intelligence in multi-omics analysis, we anticipate a shifting paradigm in precision medicine becoming driven by artificial intelligence-based multi-omics technologies.</description><identifier>ISSN: 1044-579X</identifier><identifier>EISSN: 1096-3650</identifier><identifier>DOI: 10.1016/j.semcancer.2022.12.009</identifier><identifier>PMID: 36596352</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Cancer screening and diagnosis ; Humans ; Integration analysis ; Multi-omics technologies ; Multiomics ; Neoplasms - diagnosis ; Neoplasms - genetics ; Neoplasms - therapy ; Precision Medicine ; Prognosis prediction ; Response assessment ; Transcriptome</subject><ispartof>Seminars in cancer biology, 2023-01, Vol.88, p.187-200</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03</citedby><cites>FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36596352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Xiujing</creatorcontrib><creatorcontrib>Liu, Xiaowei</creatorcontrib><creatorcontrib>Zuo, Fengli</creatorcontrib><creatorcontrib>Shi, Hubing</creatorcontrib><creatorcontrib>Jing, Jing</creatorcontrib><title>Artificial intelligence-based multi-omics analysis fuels cancer precision medicine</title><title>Seminars in cancer biology</title><addtitle>Semin Cancer Biol</addtitle><description>With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics approaches, have empowered to characterize different molecular layers at unprecedented scale and resolution, providing a holistic view of tumor behavior. Multi-omics analysis allows systematic interrogation of various molecular information at each biological layer while posing tricky challenges regarding how to extract valuable insights from the exponentially increasing amount of multi-omics data. Therefore, efficient algorithms are needed to reduce the dimensionality of the data while simultaneously dissecting the mysteries behind the complex biological processes of cancer. Artificial intelligence has demonstrated the ability to analyze complementary multi-modal data streams within the oncology realm. The coincident development of multi-omics technologies and artificial intelligence algorithms has fuelled the development of cancer precision medicine. Here, we present state-of-the-art omics technologies and outline a roadmap of multi-omics integration analysis using an artificial intelligence strategy. The advances made using artificial intelligence-based multi-omics approaches are described, especially concerning early cancer screening, diagnosis, response assessment, and prognosis prediction. Finally, we discuss the challenges faced in multi-omics analysis, along with tentative future trends in this field. With the increasing application of artificial intelligence in multi-omics analysis, we anticipate a shifting paradigm in precision medicine becoming driven by artificial intelligence-based multi-omics technologies.</description><subject>Artificial Intelligence</subject><subject>Cancer screening and diagnosis</subject><subject>Humans</subject><subject>Integration analysis</subject><subject>Multi-omics technologies</subject><subject>Multiomics</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - therapy</subject><subject>Precision Medicine</subject><subject>Prognosis prediction</subject><subject>Response assessment</subject><subject>Transcriptome</subject><issn>1044-579X</issn><issn>1096-3650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAYhYMozjj6Ctqlm9YkzaVdDoM3GBBEwV1I0r-SoZcxaYV5e1M6unWVQM4l50PohuCMYCLudlmA1urOgs8opjQjNMO4PEFLgkuR5oLj0-nOWMpl-bFAFyHscFQwws7RIr6XIud0iV7XfnC1s043iesGaBr3CTE2NTpAlbRjM7i0b50Nie50cwguJPUITUjm9mTvwbrg-i5poYo5HVyis1o3Aa6O5wq9P9y_bZ7S7cvj82a9TS2jeEhraTS3QhqwRhDOLS1yDbyK-4zGnOW4IALn8atGiIJQYo0WTBaVhAKLCucrdDvn7n3_NUIYVOuCjQt0B_0YFJUiRkjGRJTKWWp9H4KHWu29a7U_KILVBFTt1B9QNQFVhKqIKzqvjyWjiQP_fL8Eo2A9CyIT-HbRHqybCFYukhlU1bt_S34AphiLuw</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>He, Xiujing</creator><creator>Liu, Xiaowei</creator><creator>Zuo, Fengli</creator><creator>Shi, Hubing</creator><creator>Jing, Jing</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202301</creationdate><title>Artificial intelligence-based multi-omics analysis fuels cancer precision medicine</title><author>He, Xiujing ; Liu, Xiaowei ; Zuo, Fengli ; Shi, Hubing ; Jing, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Cancer screening and diagnosis</topic><topic>Humans</topic><topic>Integration analysis</topic><topic>Multi-omics technologies</topic><topic>Multiomics</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - therapy</topic><topic>Precision Medicine</topic><topic>Prognosis prediction</topic><topic>Response assessment</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xiujing</creatorcontrib><creatorcontrib>Liu, Xiaowei</creatorcontrib><creatorcontrib>Zuo, Fengli</creatorcontrib><creatorcontrib>Shi, Hubing</creatorcontrib><creatorcontrib>Jing, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Seminars in cancer biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xiujing</au><au>Liu, Xiaowei</au><au>Zuo, Fengli</au><au>Shi, Hubing</au><au>Jing, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence-based multi-omics analysis fuels cancer precision medicine</atitle><jtitle>Seminars in cancer biology</jtitle><addtitle>Semin Cancer Biol</addtitle><date>2023-01</date><risdate>2023</risdate><volume>88</volume><spage>187</spage><epage>200</epage><pages>187-200</pages><issn>1044-579X</issn><eissn>1096-3650</eissn><abstract>With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics approaches, have empowered to characterize different molecular layers at unprecedented scale and resolution, providing a holistic view of tumor behavior. Multi-omics analysis allows systematic interrogation of various molecular information at each biological layer while posing tricky challenges regarding how to extract valuable insights from the exponentially increasing amount of multi-omics data. Therefore, efficient algorithms are needed to reduce the dimensionality of the data while simultaneously dissecting the mysteries behind the complex biological processes of cancer. Artificial intelligence has demonstrated the ability to analyze complementary multi-modal data streams within the oncology realm. The coincident development of multi-omics technologies and artificial intelligence algorithms has fuelled the development of cancer precision medicine. Here, we present state-of-the-art omics technologies and outline a roadmap of multi-omics integration analysis using an artificial intelligence strategy. The advances made using artificial intelligence-based multi-omics approaches are described, especially concerning early cancer screening, diagnosis, response assessment, and prognosis prediction. Finally, we discuss the challenges faced in multi-omics analysis, along with tentative future trends in this field. With the increasing application of artificial intelligence in multi-omics analysis, we anticipate a shifting paradigm in precision medicine becoming driven by artificial intelligence-based multi-omics technologies.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36596352</pmid><doi>10.1016/j.semcancer.2022.12.009</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-579X |
ispartof | Seminars in cancer biology, 2023-01, Vol.88, p.187-200 |
issn | 1044-579X 1096-3650 |
language | eng |
recordid | cdi_proquest_miscellaneous_2760817446 |
source | Elsevier |
subjects | Artificial Intelligence Cancer screening and diagnosis Humans Integration analysis Multi-omics technologies Multiomics Neoplasms - diagnosis Neoplasms - genetics Neoplasms - therapy Precision Medicine Prognosis prediction Response assessment Transcriptome |
title | Artificial intelligence-based multi-omics analysis fuels cancer precision medicine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence-based%20multi-omics%20analysis%20fuels%20cancer%20precision%20medicine&rft.jtitle=Seminars%20in%20cancer%20biology&rft.au=He,%20Xiujing&rft.date=2023-01&rft.volume=88&rft.spage=187&rft.epage=200&rft.pages=187-200&rft.issn=1044-579X&rft.eissn=1096-3650&rft_id=info:doi/10.1016/j.semcancer.2022.12.009&rft_dat=%3Cproquest_cross%3E2760817446%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760817446&rft_id=info:pmid/36596352&rfr_iscdi=true |