Loading…

Artificial intelligence-based multi-omics analysis fuels cancer precision medicine

With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics ap...

Full description

Saved in:
Bibliographic Details
Published in:Seminars in cancer biology 2023-01, Vol.88, p.187-200
Main Authors: He, Xiujing, Liu, Xiaowei, Zuo, Fengli, Shi, Hubing, Jing, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03
cites cdi_FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03
container_end_page 200
container_issue
container_start_page 187
container_title Seminars in cancer biology
container_volume 88
creator He, Xiujing
Liu, Xiaowei
Zuo, Fengli
Shi, Hubing
Jing, Jing
description With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics approaches, have empowered to characterize different molecular layers at unprecedented scale and resolution, providing a holistic view of tumor behavior. Multi-omics analysis allows systematic interrogation of various molecular information at each biological layer while posing tricky challenges regarding how to extract valuable insights from the exponentially increasing amount of multi-omics data. Therefore, efficient algorithms are needed to reduce the dimensionality of the data while simultaneously dissecting the mysteries behind the complex biological processes of cancer. Artificial intelligence has demonstrated the ability to analyze complementary multi-modal data streams within the oncology realm. The coincident development of multi-omics technologies and artificial intelligence algorithms has fuelled the development of cancer precision medicine. Here, we present state-of-the-art omics technologies and outline a roadmap of multi-omics integration analysis using an artificial intelligence strategy. The advances made using artificial intelligence-based multi-omics approaches are described, especially concerning early cancer screening, diagnosis, response assessment, and prognosis prediction. Finally, we discuss the challenges faced in multi-omics analysis, along with tentative future trends in this field. With the increasing application of artificial intelligence in multi-omics analysis, we anticipate a shifting paradigm in precision medicine becoming driven by artificial intelligence-based multi-omics technologies.
doi_str_mv 10.1016/j.semcancer.2022.12.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2760817446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044579X22002632</els_id><sourcerecordid>2760817446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03</originalsourceid><addsrcrecordid>eNqFkMtKxDAYhYMozjj6Ctqlm9YkzaVdDoM3GBBEwV1I0r-SoZcxaYV5e1M6unWVQM4l50PohuCMYCLudlmA1urOgs8opjQjNMO4PEFLgkuR5oLj0-nOWMpl-bFAFyHscFQwws7RIr6XIud0iV7XfnC1s043iesGaBr3CTE2NTpAlbRjM7i0b50Nie50cwguJPUITUjm9mTvwbrg-i5poYo5HVyis1o3Aa6O5wq9P9y_bZ7S7cvj82a9TS2jeEhraTS3QhqwRhDOLS1yDbyK-4zGnOW4IALn8atGiIJQYo0WTBaVhAKLCucrdDvn7n3_NUIYVOuCjQt0B_0YFJUiRkjGRJTKWWp9H4KHWu29a7U_KILVBFTt1B9QNQFVhKqIKzqvjyWjiQP_fL8Eo2A9CyIT-HbRHqybCFYukhlU1bt_S34AphiLuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760817446</pqid></control><display><type>article</type><title>Artificial intelligence-based multi-omics analysis fuels cancer precision medicine</title><source>Elsevier</source><creator>He, Xiujing ; Liu, Xiaowei ; Zuo, Fengli ; Shi, Hubing ; Jing, Jing</creator><creatorcontrib>He, Xiujing ; Liu, Xiaowei ; Zuo, Fengli ; Shi, Hubing ; Jing, Jing</creatorcontrib><description>With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics approaches, have empowered to characterize different molecular layers at unprecedented scale and resolution, providing a holistic view of tumor behavior. Multi-omics analysis allows systematic interrogation of various molecular information at each biological layer while posing tricky challenges regarding how to extract valuable insights from the exponentially increasing amount of multi-omics data. Therefore, efficient algorithms are needed to reduce the dimensionality of the data while simultaneously dissecting the mysteries behind the complex biological processes of cancer. Artificial intelligence has demonstrated the ability to analyze complementary multi-modal data streams within the oncology realm. The coincident development of multi-omics technologies and artificial intelligence algorithms has fuelled the development of cancer precision medicine. Here, we present state-of-the-art omics technologies and outline a roadmap of multi-omics integration analysis using an artificial intelligence strategy. The advances made using artificial intelligence-based multi-omics approaches are described, especially concerning early cancer screening, diagnosis, response assessment, and prognosis prediction. Finally, we discuss the challenges faced in multi-omics analysis, along with tentative future trends in this field. With the increasing application of artificial intelligence in multi-omics analysis, we anticipate a shifting paradigm in precision medicine becoming driven by artificial intelligence-based multi-omics technologies.</description><identifier>ISSN: 1044-579X</identifier><identifier>EISSN: 1096-3650</identifier><identifier>DOI: 10.1016/j.semcancer.2022.12.009</identifier><identifier>PMID: 36596352</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Cancer screening and diagnosis ; Humans ; Integration analysis ; Multi-omics technologies ; Multiomics ; Neoplasms - diagnosis ; Neoplasms - genetics ; Neoplasms - therapy ; Precision Medicine ; Prognosis prediction ; Response assessment ; Transcriptome</subject><ispartof>Seminars in cancer biology, 2023-01, Vol.88, p.187-200</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03</citedby><cites>FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36596352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Xiujing</creatorcontrib><creatorcontrib>Liu, Xiaowei</creatorcontrib><creatorcontrib>Zuo, Fengli</creatorcontrib><creatorcontrib>Shi, Hubing</creatorcontrib><creatorcontrib>Jing, Jing</creatorcontrib><title>Artificial intelligence-based multi-omics analysis fuels cancer precision medicine</title><title>Seminars in cancer biology</title><addtitle>Semin Cancer Biol</addtitle><description>With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics approaches, have empowered to characterize different molecular layers at unprecedented scale and resolution, providing a holistic view of tumor behavior. Multi-omics analysis allows systematic interrogation of various molecular information at each biological layer while posing tricky challenges regarding how to extract valuable insights from the exponentially increasing amount of multi-omics data. Therefore, efficient algorithms are needed to reduce the dimensionality of the data while simultaneously dissecting the mysteries behind the complex biological processes of cancer. Artificial intelligence has demonstrated the ability to analyze complementary multi-modal data streams within the oncology realm. The coincident development of multi-omics technologies and artificial intelligence algorithms has fuelled the development of cancer precision medicine. Here, we present state-of-the-art omics technologies and outline a roadmap of multi-omics integration analysis using an artificial intelligence strategy. The advances made using artificial intelligence-based multi-omics approaches are described, especially concerning early cancer screening, diagnosis, response assessment, and prognosis prediction. Finally, we discuss the challenges faced in multi-omics analysis, along with tentative future trends in this field. With the increasing application of artificial intelligence in multi-omics analysis, we anticipate a shifting paradigm in precision medicine becoming driven by artificial intelligence-based multi-omics technologies.</description><subject>Artificial Intelligence</subject><subject>Cancer screening and diagnosis</subject><subject>Humans</subject><subject>Integration analysis</subject><subject>Multi-omics technologies</subject><subject>Multiomics</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - therapy</subject><subject>Precision Medicine</subject><subject>Prognosis prediction</subject><subject>Response assessment</subject><subject>Transcriptome</subject><issn>1044-579X</issn><issn>1096-3650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAYhYMozjj6Ctqlm9YkzaVdDoM3GBBEwV1I0r-SoZcxaYV5e1M6unWVQM4l50PohuCMYCLudlmA1urOgs8opjQjNMO4PEFLgkuR5oLj0-nOWMpl-bFAFyHscFQwws7RIr6XIud0iV7XfnC1s043iesGaBr3CTE2NTpAlbRjM7i0b50Nie50cwguJPUITUjm9mTvwbrg-i5poYo5HVyis1o3Aa6O5wq9P9y_bZ7S7cvj82a9TS2jeEhraTS3QhqwRhDOLS1yDbyK-4zGnOW4IALn8atGiIJQYo0WTBaVhAKLCucrdDvn7n3_NUIYVOuCjQt0B_0YFJUiRkjGRJTKWWp9H4KHWu29a7U_KILVBFTt1B9QNQFVhKqIKzqvjyWjiQP_fL8Eo2A9CyIT-HbRHqybCFYukhlU1bt_S34AphiLuw</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>He, Xiujing</creator><creator>Liu, Xiaowei</creator><creator>Zuo, Fengli</creator><creator>Shi, Hubing</creator><creator>Jing, Jing</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202301</creationdate><title>Artificial intelligence-based multi-omics analysis fuels cancer precision medicine</title><author>He, Xiujing ; Liu, Xiaowei ; Zuo, Fengli ; Shi, Hubing ; Jing, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Cancer screening and diagnosis</topic><topic>Humans</topic><topic>Integration analysis</topic><topic>Multi-omics technologies</topic><topic>Multiomics</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - therapy</topic><topic>Precision Medicine</topic><topic>Prognosis prediction</topic><topic>Response assessment</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xiujing</creatorcontrib><creatorcontrib>Liu, Xiaowei</creatorcontrib><creatorcontrib>Zuo, Fengli</creatorcontrib><creatorcontrib>Shi, Hubing</creatorcontrib><creatorcontrib>Jing, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Seminars in cancer biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xiujing</au><au>Liu, Xiaowei</au><au>Zuo, Fengli</au><au>Shi, Hubing</au><au>Jing, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence-based multi-omics analysis fuels cancer precision medicine</atitle><jtitle>Seminars in cancer biology</jtitle><addtitle>Semin Cancer Biol</addtitle><date>2023-01</date><risdate>2023</risdate><volume>88</volume><spage>187</spage><epage>200</epage><pages>187-200</pages><issn>1044-579X</issn><eissn>1096-3650</eissn><abstract>With biotechnological advancements, innovative omics technologies are constantly emerging that have enabled researchers to access multi-layer information from the genome, epigenome, transcriptome, proteome, metabolome, and more. A wealth of omics technologies, including bulk and single-cell omics approaches, have empowered to characterize different molecular layers at unprecedented scale and resolution, providing a holistic view of tumor behavior. Multi-omics analysis allows systematic interrogation of various molecular information at each biological layer while posing tricky challenges regarding how to extract valuable insights from the exponentially increasing amount of multi-omics data. Therefore, efficient algorithms are needed to reduce the dimensionality of the data while simultaneously dissecting the mysteries behind the complex biological processes of cancer. Artificial intelligence has demonstrated the ability to analyze complementary multi-modal data streams within the oncology realm. The coincident development of multi-omics technologies and artificial intelligence algorithms has fuelled the development of cancer precision medicine. Here, we present state-of-the-art omics technologies and outline a roadmap of multi-omics integration analysis using an artificial intelligence strategy. The advances made using artificial intelligence-based multi-omics approaches are described, especially concerning early cancer screening, diagnosis, response assessment, and prognosis prediction. Finally, we discuss the challenges faced in multi-omics analysis, along with tentative future trends in this field. With the increasing application of artificial intelligence in multi-omics analysis, we anticipate a shifting paradigm in precision medicine becoming driven by artificial intelligence-based multi-omics technologies.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36596352</pmid><doi>10.1016/j.semcancer.2022.12.009</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1044-579X
ispartof Seminars in cancer biology, 2023-01, Vol.88, p.187-200
issn 1044-579X
1096-3650
language eng
recordid cdi_proquest_miscellaneous_2760817446
source Elsevier
subjects Artificial Intelligence
Cancer screening and diagnosis
Humans
Integration analysis
Multi-omics technologies
Multiomics
Neoplasms - diagnosis
Neoplasms - genetics
Neoplasms - therapy
Precision Medicine
Prognosis prediction
Response assessment
Transcriptome
title Artificial intelligence-based multi-omics analysis fuels cancer precision medicine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence-based%20multi-omics%20analysis%20fuels%20cancer%20precision%20medicine&rft.jtitle=Seminars%20in%20cancer%20biology&rft.au=He,%20Xiujing&rft.date=2023-01&rft.volume=88&rft.spage=187&rft.epage=200&rft.pages=187-200&rft.issn=1044-579X&rft.eissn=1096-3650&rft_id=info:doi/10.1016/j.semcancer.2022.12.009&rft_dat=%3Cproquest_cross%3E2760817446%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-f7ba5c67becb6155c283ae5d101ba0543081603365b668121cba6478d7e806d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760817446&rft_id=info:pmid/36596352&rfr_iscdi=true