Loading…
An analysis for effect of cetane number on exhaust emissions from engine with the neural network
Decoupling cetane number from the other compositions and properties of diesel fuel, the individual effect of cetane number on the exhaust emissions from an engine may be researched. This paper has presented a back-propagation neural network model predicting the exhaust emissions from an engine with...
Saved in:
Published in: | Fuel (Guildford) 2002-10, Vol.81 (15), p.1963-1970 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c399t-32d6980a1a2a1d8509b1d6fa383d99f1301a656e518f39656aedd974779a306e3 |
---|---|
cites | |
container_end_page | 1970 |
container_issue | 15 |
container_start_page | 1963 |
container_title | Fuel (Guildford) |
container_volume | 81 |
creator | Yuanwang, Deng Meilin, Zhu Dong, Xiang Xiaobei, Cheng |
description | Decoupling cetane number from the other compositions and properties of diesel fuel, the individual effect of cetane number on the exhaust emissions from an engine may be researched. This paper has presented a back-propagation neural network model predicting the exhaust emissions from an engine with the inputs of total cetane number, base cetane number and cetane improver, total cetane number and nitrogen content in the diesel fuel; as well as the output of the exhaust emissions of hydrocarbon (HC), carbon oxide (CO), particulate matter (PM) and nitrogen oxide (NO
x
). An optimal design has been completed for the number of hidden layers, the number of hidden neurons, the activation function, and the goal errors, along with the initial weights and biases in the back-propagation neural network model. HC, CO, PM and NO
x
have been predicted with the model, the effects of cetane improver and nitrogen content on them have also been analyzed, and better results have been achieved. |
doi_str_mv | 10.1016/S0016-2361(02)00112-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27615186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236102001126</els_id><sourcerecordid>27615186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-32d6980a1a2a1d8509b1d6fa383d99f1301a656e518f39656aedd974779a306e3</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhq2KSl2gP6GSL63gEPDEGyc-IYT4kpA4tD27s864a8ja1E4K_Hu8H2qPXDy29Lzzzrxm7AuIExCgTr-Lcla1VHAk6uPygLpSH9gMulZWLTRyj83-IZ_Yfs4PQoi2a-Yz9us8cAw4vGafuYuJk3NkRx4dtzRiIB6m1YISj4HTyxKnPHJa-Zx9DEWQ4opT-O0L9-zHJR-XRUBTwqGU8Tmmx0P20eGQ6fOuHrCfV5c_Lm6qu_vr24vzu8pKrcdK1r3SnUDAGqHvGqEX0CuHspO91g6kAFSNogY6J3W5IfW9budtq1EKRfKAfdv2fUrxz0R5NGVKS8NQdohTNnWroIjVuyAomAvRdQVstqBNMedEzjwlv8L0akCYdfBmE7xZp2pEbTbBm7XB150BZouDSxisz__FZaW53vQ_23JUYvnrKZlsPQVLvU_lC0wf_TtObyiRluo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16140088</pqid></control><display><type>article</type><title>An analysis for effect of cetane number on exhaust emissions from engine with the neural network</title><source>ScienceDirect Freedom Collection</source><creator>Yuanwang, Deng ; Meilin, Zhu ; Dong, Xiang ; Xiaobei, Cheng</creator><creatorcontrib>Yuanwang, Deng ; Meilin, Zhu ; Dong, Xiang ; Xiaobei, Cheng</creatorcontrib><description>Decoupling cetane number from the other compositions and properties of diesel fuel, the individual effect of cetane number on the exhaust emissions from an engine may be researched. This paper has presented a back-propagation neural network model predicting the exhaust emissions from an engine with the inputs of total cetane number, base cetane number and cetane improver, total cetane number and nitrogen content in the diesel fuel; as well as the output of the exhaust emissions of hydrocarbon (HC), carbon oxide (CO), particulate matter (PM) and nitrogen oxide (NO
x
). An optimal design has been completed for the number of hidden layers, the number of hidden neurons, the activation function, and the goal errors, along with the initial weights and biases in the back-propagation neural network model. HC, CO, PM and NO
x
have been predicted with the model, the effects of cetane improver and nitrogen content on them have also been analyzed, and better results have been achieved.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/S0016-2361(02)00112-6</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Air pollution caused by fuel industries ; Applied sciences ; Back-propagation neural network model ; cetane ; Cetane number ; Diesel fuel ; Energy ; Energy. Thermal use of fuels ; Engine ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Exhaust emissions ; Metering. Control ; neural networks</subject><ispartof>Fuel (Guildford), 2002-10, Vol.81 (15), p.1963-1970</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-32d6980a1a2a1d8509b1d6fa383d99f1301a656e518f39656aedd974779a306e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13834988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuanwang, Deng</creatorcontrib><creatorcontrib>Meilin, Zhu</creatorcontrib><creatorcontrib>Dong, Xiang</creatorcontrib><creatorcontrib>Xiaobei, Cheng</creatorcontrib><title>An analysis for effect of cetane number on exhaust emissions from engine with the neural network</title><title>Fuel (Guildford)</title><description>Decoupling cetane number from the other compositions and properties of diesel fuel, the individual effect of cetane number on the exhaust emissions from an engine may be researched. This paper has presented a back-propagation neural network model predicting the exhaust emissions from an engine with the inputs of total cetane number, base cetane number and cetane improver, total cetane number and nitrogen content in the diesel fuel; as well as the output of the exhaust emissions of hydrocarbon (HC), carbon oxide (CO), particulate matter (PM) and nitrogen oxide (NO
x
). An optimal design has been completed for the number of hidden layers, the number of hidden neurons, the activation function, and the goal errors, along with the initial weights and biases in the back-propagation neural network model. HC, CO, PM and NO
x
have been predicted with the model, the effects of cetane improver and nitrogen content on them have also been analyzed, and better results have been achieved.</description><subject>Air pollution caused by fuel industries</subject><subject>Applied sciences</subject><subject>Back-propagation neural network model</subject><subject>cetane</subject><subject>Cetane number</subject><subject>Diesel fuel</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engine</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Exhaust emissions</subject><subject>Metering. Control</subject><subject>neural networks</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P3DAQhq2KSl2gP6GSL63gEPDEGyc-IYT4kpA4tD27s864a8ja1E4K_Hu8H2qPXDy29Lzzzrxm7AuIExCgTr-Lcla1VHAk6uPygLpSH9gMulZWLTRyj83-IZ_Yfs4PQoi2a-Yz9us8cAw4vGafuYuJk3NkRx4dtzRiIB6m1YISj4HTyxKnPHJa-Zx9DEWQ4opT-O0L9-zHJR-XRUBTwqGU8Tmmx0P20eGQ6fOuHrCfV5c_Lm6qu_vr24vzu8pKrcdK1r3SnUDAGqHvGqEX0CuHspO91g6kAFSNogY6J3W5IfW9budtq1EKRfKAfdv2fUrxz0R5NGVKS8NQdohTNnWroIjVuyAomAvRdQVstqBNMedEzjwlv8L0akCYdfBmE7xZp2pEbTbBm7XB150BZouDSxisz__FZaW53vQ_23JUYvnrKZlsPQVLvU_lC0wf_TtObyiRluo</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Yuanwang, Deng</creator><creator>Meilin, Zhu</creator><creator>Dong, Xiang</creator><creator>Xiaobei, Cheng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20021001</creationdate><title>An analysis for effect of cetane number on exhaust emissions from engine with the neural network</title><author>Yuanwang, Deng ; Meilin, Zhu ; Dong, Xiang ; Xiaobei, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-32d6980a1a2a1d8509b1d6fa383d99f1301a656e518f39656aedd974779a306e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Air pollution caused by fuel industries</topic><topic>Applied sciences</topic><topic>Back-propagation neural network model</topic><topic>cetane</topic><topic>Cetane number</topic><topic>Diesel fuel</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engine</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Exhaust emissions</topic><topic>Metering. Control</topic><topic>neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuanwang, Deng</creatorcontrib><creatorcontrib>Meilin, Zhu</creatorcontrib><creatorcontrib>Dong, Xiang</creatorcontrib><creatorcontrib>Xiaobei, Cheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuanwang, Deng</au><au>Meilin, Zhu</au><au>Dong, Xiang</au><au>Xiaobei, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analysis for effect of cetane number on exhaust emissions from engine with the neural network</atitle><jtitle>Fuel (Guildford)</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>81</volume><issue>15</issue><spage>1963</spage><epage>1970</epage><pages>1963-1970</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Decoupling cetane number from the other compositions and properties of diesel fuel, the individual effect of cetane number on the exhaust emissions from an engine may be researched. This paper has presented a back-propagation neural network model predicting the exhaust emissions from an engine with the inputs of total cetane number, base cetane number and cetane improver, total cetane number and nitrogen content in the diesel fuel; as well as the output of the exhaust emissions of hydrocarbon (HC), carbon oxide (CO), particulate matter (PM) and nitrogen oxide (NO
x
). An optimal design has been completed for the number of hidden layers, the number of hidden neurons, the activation function, and the goal errors, along with the initial weights and biases in the back-propagation neural network model. HC, CO, PM and NO
x
have been predicted with the model, the effects of cetane improver and nitrogen content on them have also been analyzed, and better results have been achieved.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0016-2361(02)00112-6</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2002-10, Vol.81 (15), p.1963-1970 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_miscellaneous_27615186 |
source | ScienceDirect Freedom Collection |
subjects | Air pollution caused by fuel industries Applied sciences Back-propagation neural network model cetane Cetane number Diesel fuel Energy Energy. Thermal use of fuels Engine Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Exhaust emissions Metering. Control neural networks |
title | An analysis for effect of cetane number on exhaust emissions from engine with the neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analysis%20for%20effect%20of%20cetane%20number%20on%20exhaust%20emissions%20from%20engine%20with%20the%20neural%20network&rft.jtitle=Fuel%20(Guildford)&rft.au=Yuanwang,%20Deng&rft.date=2002-10-01&rft.volume=81&rft.issue=15&rft.spage=1963&rft.epage=1970&rft.pages=1963-1970&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/S0016-2361(02)00112-6&rft_dat=%3Cproquest_cross%3E27615186%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-32d6980a1a2a1d8509b1d6fa383d99f1301a656e518f39656aedd974779a306e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16140088&rft_id=info:pmid/&rfr_iscdi=true |