Loading…

An analysis for effect of cetane number on exhaust emissions from engine with the neural network

Decoupling cetane number from the other compositions and properties of diesel fuel, the individual effect of cetane number on the exhaust emissions from an engine may be researched. This paper has presented a back-propagation neural network model predicting the exhaust emissions from an engine with...

Full description

Saved in:
Bibliographic Details
Published in:Fuel (Guildford) 2002-10, Vol.81 (15), p.1963-1970
Main Authors: Yuanwang, Deng, Meilin, Zhu, Dong, Xiang, Xiaobei, Cheng
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-32d6980a1a2a1d8509b1d6fa383d99f1301a656e518f39656aedd974779a306e3
cites
container_end_page 1970
container_issue 15
container_start_page 1963
container_title Fuel (Guildford)
container_volume 81
creator Yuanwang, Deng
Meilin, Zhu
Dong, Xiang
Xiaobei, Cheng
description Decoupling cetane number from the other compositions and properties of diesel fuel, the individual effect of cetane number on the exhaust emissions from an engine may be researched. This paper has presented a back-propagation neural network model predicting the exhaust emissions from an engine with the inputs of total cetane number, base cetane number and cetane improver, total cetane number and nitrogen content in the diesel fuel; as well as the output of the exhaust emissions of hydrocarbon (HC), carbon oxide (CO), particulate matter (PM) and nitrogen oxide (NO x ). An optimal design has been completed for the number of hidden layers, the number of hidden neurons, the activation function, and the goal errors, along with the initial weights and biases in the back-propagation neural network model. HC, CO, PM and NO x have been predicted with the model, the effects of cetane improver and nitrogen content on them have also been analyzed, and better results have been achieved.
doi_str_mv 10.1016/S0016-2361(02)00112-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27615186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236102001126</els_id><sourcerecordid>27615186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-32d6980a1a2a1d8509b1d6fa383d99f1301a656e518f39656aedd974779a306e3</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhq2KSl2gP6GSL63gEPDEGyc-IYT4kpA4tD27s864a8ja1E4K_Hu8H2qPXDy29Lzzzrxm7AuIExCgTr-Lcla1VHAk6uPygLpSH9gMulZWLTRyj83-IZ_Yfs4PQoi2a-Yz9us8cAw4vGafuYuJk3NkRx4dtzRiIB6m1YISj4HTyxKnPHJa-Zx9DEWQ4opT-O0L9-zHJR-XRUBTwqGU8Tmmx0P20eGQ6fOuHrCfV5c_Lm6qu_vr24vzu8pKrcdK1r3SnUDAGqHvGqEX0CuHspO91g6kAFSNogY6J3W5IfW9budtq1EKRfKAfdv2fUrxz0R5NGVKS8NQdohTNnWroIjVuyAomAvRdQVstqBNMedEzjwlv8L0akCYdfBmE7xZp2pEbTbBm7XB150BZouDSxisz__FZaW53vQ_23JUYvnrKZlsPQVLvU_lC0wf_TtObyiRluo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16140088</pqid></control><display><type>article</type><title>An analysis for effect of cetane number on exhaust emissions from engine with the neural network</title><source>ScienceDirect Freedom Collection</source><creator>Yuanwang, Deng ; Meilin, Zhu ; Dong, Xiang ; Xiaobei, Cheng</creator><creatorcontrib>Yuanwang, Deng ; Meilin, Zhu ; Dong, Xiang ; Xiaobei, Cheng</creatorcontrib><description>Decoupling cetane number from the other compositions and properties of diesel fuel, the individual effect of cetane number on the exhaust emissions from an engine may be researched. This paper has presented a back-propagation neural network model predicting the exhaust emissions from an engine with the inputs of total cetane number, base cetane number and cetane improver, total cetane number and nitrogen content in the diesel fuel; as well as the output of the exhaust emissions of hydrocarbon (HC), carbon oxide (CO), particulate matter (PM) and nitrogen oxide (NO x ). An optimal design has been completed for the number of hidden layers, the number of hidden neurons, the activation function, and the goal errors, along with the initial weights and biases in the back-propagation neural network model. HC, CO, PM and NO x have been predicted with the model, the effects of cetane improver and nitrogen content on them have also been analyzed, and better results have been achieved.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/S0016-2361(02)00112-6</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Air pollution caused by fuel industries ; Applied sciences ; Back-propagation neural network model ; cetane ; Cetane number ; Diesel fuel ; Energy ; Energy. Thermal use of fuels ; Engine ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Exhaust emissions ; Metering. Control ; neural networks</subject><ispartof>Fuel (Guildford), 2002-10, Vol.81 (15), p.1963-1970</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-32d6980a1a2a1d8509b1d6fa383d99f1301a656e518f39656aedd974779a306e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13834988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuanwang, Deng</creatorcontrib><creatorcontrib>Meilin, Zhu</creatorcontrib><creatorcontrib>Dong, Xiang</creatorcontrib><creatorcontrib>Xiaobei, Cheng</creatorcontrib><title>An analysis for effect of cetane number on exhaust emissions from engine with the neural network</title><title>Fuel (Guildford)</title><description>Decoupling cetane number from the other compositions and properties of diesel fuel, the individual effect of cetane number on the exhaust emissions from an engine may be researched. This paper has presented a back-propagation neural network model predicting the exhaust emissions from an engine with the inputs of total cetane number, base cetane number and cetane improver, total cetane number and nitrogen content in the diesel fuel; as well as the output of the exhaust emissions of hydrocarbon (HC), carbon oxide (CO), particulate matter (PM) and nitrogen oxide (NO x ). An optimal design has been completed for the number of hidden layers, the number of hidden neurons, the activation function, and the goal errors, along with the initial weights and biases in the back-propagation neural network model. HC, CO, PM and NO x have been predicted with the model, the effects of cetane improver and nitrogen content on them have also been analyzed, and better results have been achieved.</description><subject>Air pollution caused by fuel industries</subject><subject>Applied sciences</subject><subject>Back-propagation neural network model</subject><subject>cetane</subject><subject>Cetane number</subject><subject>Diesel fuel</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engine</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Exhaust emissions</subject><subject>Metering. Control</subject><subject>neural networks</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P3DAQhq2KSl2gP6GSL63gEPDEGyc-IYT4kpA4tD27s864a8ja1E4K_Hu8H2qPXDy29Lzzzrxm7AuIExCgTr-Lcla1VHAk6uPygLpSH9gMulZWLTRyj83-IZ_Yfs4PQoi2a-Yz9us8cAw4vGafuYuJk3NkRx4dtzRiIB6m1YISj4HTyxKnPHJa-Zx9DEWQ4opT-O0L9-zHJR-XRUBTwqGU8Tmmx0P20eGQ6fOuHrCfV5c_Lm6qu_vr24vzu8pKrcdK1r3SnUDAGqHvGqEX0CuHspO91g6kAFSNogY6J3W5IfW9budtq1EKRfKAfdv2fUrxz0R5NGVKS8NQdohTNnWroIjVuyAomAvRdQVstqBNMedEzjwlv8L0akCYdfBmE7xZp2pEbTbBm7XB150BZouDSxisz__FZaW53vQ_23JUYvnrKZlsPQVLvU_lC0wf_TtObyiRluo</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Yuanwang, Deng</creator><creator>Meilin, Zhu</creator><creator>Dong, Xiang</creator><creator>Xiaobei, Cheng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20021001</creationdate><title>An analysis for effect of cetane number on exhaust emissions from engine with the neural network</title><author>Yuanwang, Deng ; Meilin, Zhu ; Dong, Xiang ; Xiaobei, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-32d6980a1a2a1d8509b1d6fa383d99f1301a656e518f39656aedd974779a306e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Air pollution caused by fuel industries</topic><topic>Applied sciences</topic><topic>Back-propagation neural network model</topic><topic>cetane</topic><topic>Cetane number</topic><topic>Diesel fuel</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engine</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Exhaust emissions</topic><topic>Metering. Control</topic><topic>neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuanwang, Deng</creatorcontrib><creatorcontrib>Meilin, Zhu</creatorcontrib><creatorcontrib>Dong, Xiang</creatorcontrib><creatorcontrib>Xiaobei, Cheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuanwang, Deng</au><au>Meilin, Zhu</au><au>Dong, Xiang</au><au>Xiaobei, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analysis for effect of cetane number on exhaust emissions from engine with the neural network</atitle><jtitle>Fuel (Guildford)</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>81</volume><issue>15</issue><spage>1963</spage><epage>1970</epage><pages>1963-1970</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Decoupling cetane number from the other compositions and properties of diesel fuel, the individual effect of cetane number on the exhaust emissions from an engine may be researched. This paper has presented a back-propagation neural network model predicting the exhaust emissions from an engine with the inputs of total cetane number, base cetane number and cetane improver, total cetane number and nitrogen content in the diesel fuel; as well as the output of the exhaust emissions of hydrocarbon (HC), carbon oxide (CO), particulate matter (PM) and nitrogen oxide (NO x ). An optimal design has been completed for the number of hidden layers, the number of hidden neurons, the activation function, and the goal errors, along with the initial weights and biases in the back-propagation neural network model. HC, CO, PM and NO x have been predicted with the model, the effects of cetane improver and nitrogen content on them have also been analyzed, and better results have been achieved.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0016-2361(02)00112-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2002-10, Vol.81 (15), p.1963-1970
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_miscellaneous_27615186
source ScienceDirect Freedom Collection
subjects Air pollution caused by fuel industries
Applied sciences
Back-propagation neural network model
cetane
Cetane number
Diesel fuel
Energy
Energy. Thermal use of fuels
Engine
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Exhaust emissions
Metering. Control
neural networks
title An analysis for effect of cetane number on exhaust emissions from engine with the neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analysis%20for%20effect%20of%20cetane%20number%20on%20exhaust%20emissions%20from%20engine%20with%20the%20neural%20network&rft.jtitle=Fuel%20(Guildford)&rft.au=Yuanwang,%20Deng&rft.date=2002-10-01&rft.volume=81&rft.issue=15&rft.spage=1963&rft.epage=1970&rft.pages=1963-1970&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/S0016-2361(02)00112-6&rft_dat=%3Cproquest_cross%3E27615186%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-32d6980a1a2a1d8509b1d6fa383d99f1301a656e518f39656aedd974779a306e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16140088&rft_id=info:pmid/&rfr_iscdi=true