Loading…
An energy and momentum conserving method for rigid-flexible body dynamics
In this work, an energy and momentum conserving method is developed for doing coupled flexible and rigid body dynamics. The main focus is on the bilateral connection of flexible finite elements to rigid bodies. The coupling of rigid bodies at joints is also introduced. Existing conserving algorithms...
Saved in:
Published in: | International journal for numerical methods in engineering 2002-02, Vol.53 (6), p.1393-1414 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, an energy and momentum conserving method is developed for doing coupled flexible and rigid body dynamics. The main focus is on the bilateral connection of flexible finite elements to rigid bodies. The coupling of rigid bodies at joints is also introduced. Existing conserving algorithms for individual (un‐coupled) rigid and flexible bodies are exploited and modified for the coupled system. By using the appropriate rigid body rotational update and generalized force definitions, the resulting rigid–flexible and rigid–rigid systems are unconditionally stable and conserve linear and angular momentum. The conservation and stability properties are demonstrated in numerical simulation. Published in 2001 by John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.342 |