Loading…

Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor

The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in v...

Full description

Saved in:
Bibliographic Details
Published in:Journal of photochemistry and photobiology. B, Biology Biology, 2023-02, Vol.239, p.112633-112633, Article 112633
Main Authors: Firsov, Alexander M., Pfeffermann, Juergen, Benditkis, Anton S., Rokitskaya, Tatyana I., Kozlov, Anton S., Kotova, Elena A., Krasnovsky, Alexander A., Pohl, Peter, Antonenko, Yuri N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03
cites cdi_FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03
container_end_page 112633
container_issue
container_start_page 112633
container_title Journal of photochemistry and photobiology. B, Biology
container_volume 239
creator Firsov, Alexander M.
Pfeffermann, Juergen
Benditkis, Anton S.
Rokitskaya, Tatyana I.
Kozlov, Anton S.
Kotova, Elena A.
Krasnovsky, Alexander A.
Pohl, Peter
Antonenko, Yuri N.
description The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited “molecular drill” oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities. •Claims about drilling lipid bilayers by light-powered motors violate the laws of membrane elasticity.•Testing one of these “drilling” molecular motors, M3, we found singlet oxygen phosphorescence.•M3-induced photooxidation permeabilizes vesicles made of unsaturated but not saturated lipids.•Inhibitors of photooxidation protect the membrane barrier from “drilling” by M3.•Singlet oxygen scavengers suppress M3-sensitized gramicidin channel photoinactivation.
doi_str_mv 10.1016/j.jphotobiol.2022.112633
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2761975280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1011134422002482</els_id><sourcerecordid>2761975280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03</originalsourceid><addsrcrecordid>eNqFkE1v3CAQhlHUKN9_IeLYizd8rW2ObdQ2kSK1h-aMMAxrVmC2gBPtv49XmzbHzoU5PDPv8CCEKVlRQtu77Wq7G1NNg09hxQhjK0pZy_kJuqB9xxvW9uzT0hNKG8qFOEeXpWzJUuu2O0PnvG1JLwi9QOOvwx67n3T0BmtT_Yuve5x1HSHjOuoJ2-xD8NMGGz0XKDhCHLKeAFsd9QbwsMcaB78Za7NLr5DB4pgCmDnojCc9pbgk5Gt06nQocPP-XqHn799-3z80Tz9_PN5_eWqMYKI2snfcWScccQJsxy3X3EmQawvASLcWIC2TpBVCDxoGKS3nVhK2QFQ6S_gV-nzcu8vpzwylquiLgRCWi9NcFOtaKrs16w9of0RNTqVkcGqXfdR5ryhRB89qqz48q4NndfS8jN6-p8xDBPtv8K_YBfh6BGD564uHrIrxMBmwPoOpyib__5Q3SS-WeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761975280</pqid></control><display><type>article</type><title>Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor</title><source>Elsevier</source><creator>Firsov, Alexander M. ; Pfeffermann, Juergen ; Benditkis, Anton S. ; Rokitskaya, Tatyana I. ; Kozlov, Anton S. ; Kotova, Elena A. ; Krasnovsky, Alexander A. ; Pohl, Peter ; Antonenko, Yuri N.</creator><creatorcontrib>Firsov, Alexander M. ; Pfeffermann, Juergen ; Benditkis, Anton S. ; Rokitskaya, Tatyana I. ; Kozlov, Anton S. ; Kotova, Elena A. ; Krasnovsky, Alexander A. ; Pohl, Peter ; Antonenko, Yuri N.</creatorcontrib><description>The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited “molecular drill” oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities. •Claims about drilling lipid bilayers by light-powered motors violate the laws of membrane elasticity.•Testing one of these “drilling” molecular motors, M3, we found singlet oxygen phosphorescence.•M3-induced photooxidation permeabilizes vesicles made of unsaturated but not saturated lipids.•Inhibitors of photooxidation protect the membrane barrier from “drilling” by M3.•Singlet oxygen scavengers suppress M3-sensitized gramicidin channel photoinactivation.</description><identifier>ISSN: 1011-1344</identifier><identifier>EISSN: 1873-2682</identifier><identifier>DOI: 10.1016/j.jphotobiol.2022.112633</identifier><identifier>PMID: 36608401</identifier><language>eng</language><publisher>Switzerland: Elsevier B.V</publisher><subject>Artificial molecular motors ; Cell Membrane ; Gramicidin - chemistry ; Gramicidin - pharmacology ; Lipid Bilayers - chemistry ; Lipid peroxidation ; Nanomotor ; Photodynamic ; Photosensitizer ; Singlet oxygen ; Singlet Oxygen - chemistry ; Unilamellar Liposomes</subject><ispartof>Journal of photochemistry and photobiology. B, Biology, 2023-02, Vol.239, p.112633-112633, Article 112633</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03</citedby><cites>FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36608401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Firsov, Alexander M.</creatorcontrib><creatorcontrib>Pfeffermann, Juergen</creatorcontrib><creatorcontrib>Benditkis, Anton S.</creatorcontrib><creatorcontrib>Rokitskaya, Tatyana I.</creatorcontrib><creatorcontrib>Kozlov, Anton S.</creatorcontrib><creatorcontrib>Kotova, Elena A.</creatorcontrib><creatorcontrib>Krasnovsky, Alexander A.</creatorcontrib><creatorcontrib>Pohl, Peter</creatorcontrib><creatorcontrib>Antonenko, Yuri N.</creatorcontrib><title>Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor</title><title>Journal of photochemistry and photobiology. B, Biology</title><addtitle>J Photochem Photobiol B</addtitle><description>The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited “molecular drill” oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities. •Claims about drilling lipid bilayers by light-powered motors violate the laws of membrane elasticity.•Testing one of these “drilling” molecular motors, M3, we found singlet oxygen phosphorescence.•M3-induced photooxidation permeabilizes vesicles made of unsaturated but not saturated lipids.•Inhibitors of photooxidation protect the membrane barrier from “drilling” by M3.•Singlet oxygen scavengers suppress M3-sensitized gramicidin channel photoinactivation.</description><subject>Artificial molecular motors</subject><subject>Cell Membrane</subject><subject>Gramicidin - chemistry</subject><subject>Gramicidin - pharmacology</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid peroxidation</subject><subject>Nanomotor</subject><subject>Photodynamic</subject><subject>Photosensitizer</subject><subject>Singlet oxygen</subject><subject>Singlet Oxygen - chemistry</subject><subject>Unilamellar Liposomes</subject><issn>1011-1344</issn><issn>1873-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v3CAQhlHUKN9_IeLYizd8rW2ObdQ2kSK1h-aMMAxrVmC2gBPtv49XmzbHzoU5PDPv8CCEKVlRQtu77Wq7G1NNg09hxQhjK0pZy_kJuqB9xxvW9uzT0hNKG8qFOEeXpWzJUuu2O0PnvG1JLwi9QOOvwx67n3T0BmtT_Yuve5x1HSHjOuoJ2-xD8NMGGz0XKDhCHLKeAFsd9QbwsMcaB78Za7NLr5DB4pgCmDnojCc9pbgk5Gt06nQocPP-XqHn799-3z80Tz9_PN5_eWqMYKI2snfcWScccQJsxy3X3EmQawvASLcWIC2TpBVCDxoGKS3nVhK2QFQ6S_gV-nzcu8vpzwylquiLgRCWi9NcFOtaKrs16w9of0RNTqVkcGqXfdR5ryhRB89qqz48q4NndfS8jN6-p8xDBPtv8K_YBfh6BGD564uHrIrxMBmwPoOpyib__5Q3SS-WeA</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Firsov, Alexander M.</creator><creator>Pfeffermann, Juergen</creator><creator>Benditkis, Anton S.</creator><creator>Rokitskaya, Tatyana I.</creator><creator>Kozlov, Anton S.</creator><creator>Kotova, Elena A.</creator><creator>Krasnovsky, Alexander A.</creator><creator>Pohl, Peter</creator><creator>Antonenko, Yuri N.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202302</creationdate><title>Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor</title><author>Firsov, Alexander M. ; Pfeffermann, Juergen ; Benditkis, Anton S. ; Rokitskaya, Tatyana I. ; Kozlov, Anton S. ; Kotova, Elena A. ; Krasnovsky, Alexander A. ; Pohl, Peter ; Antonenko, Yuri N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial molecular motors</topic><topic>Cell Membrane</topic><topic>Gramicidin - chemistry</topic><topic>Gramicidin - pharmacology</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid peroxidation</topic><topic>Nanomotor</topic><topic>Photodynamic</topic><topic>Photosensitizer</topic><topic>Singlet oxygen</topic><topic>Singlet Oxygen - chemistry</topic><topic>Unilamellar Liposomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Firsov, Alexander M.</creatorcontrib><creatorcontrib>Pfeffermann, Juergen</creatorcontrib><creatorcontrib>Benditkis, Anton S.</creatorcontrib><creatorcontrib>Rokitskaya, Tatyana I.</creatorcontrib><creatorcontrib>Kozlov, Anton S.</creatorcontrib><creatorcontrib>Kotova, Elena A.</creatorcontrib><creatorcontrib>Krasnovsky, Alexander A.</creatorcontrib><creatorcontrib>Pohl, Peter</creatorcontrib><creatorcontrib>Antonenko, Yuri N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of photochemistry and photobiology. B, Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Firsov, Alexander M.</au><au>Pfeffermann, Juergen</au><au>Benditkis, Anton S.</au><au>Rokitskaya, Tatyana I.</au><au>Kozlov, Anton S.</au><au>Kotova, Elena A.</au><au>Krasnovsky, Alexander A.</au><au>Pohl, Peter</au><au>Antonenko, Yuri N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor</atitle><jtitle>Journal of photochemistry and photobiology. B, Biology</jtitle><addtitle>J Photochem Photobiol B</addtitle><date>2023-02</date><risdate>2023</risdate><volume>239</volume><spage>112633</spage><epage>112633</epage><pages>112633-112633</pages><artnum>112633</artnum><issn>1011-1344</issn><eissn>1873-2682</eissn><abstract>The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited “molecular drill” oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities. •Claims about drilling lipid bilayers by light-powered motors violate the laws of membrane elasticity.•Testing one of these “drilling” molecular motors, M3, we found singlet oxygen phosphorescence.•M3-induced photooxidation permeabilizes vesicles made of unsaturated but not saturated lipids.•Inhibitors of photooxidation protect the membrane barrier from “drilling” by M3.•Singlet oxygen scavengers suppress M3-sensitized gramicidin channel photoinactivation.</abstract><cop>Switzerland</cop><pub>Elsevier B.V</pub><pmid>36608401</pmid><doi>10.1016/j.jphotobiol.2022.112633</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1011-1344
ispartof Journal of photochemistry and photobiology. B, Biology, 2023-02, Vol.239, p.112633-112633, Article 112633
issn 1011-1344
1873-2682
language eng
recordid cdi_proquest_miscellaneous_2761975280
source Elsevier
subjects Artificial molecular motors
Cell Membrane
Gramicidin - chemistry
Gramicidin - pharmacology
Lipid Bilayers - chemistry
Lipid peroxidation
Nanomotor
Photodynamic
Photosensitizer
Singlet oxygen
Singlet Oxygen - chemistry
Unilamellar Liposomes
title Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photodynamic%20activity%20rather%20than%20drilling%20causes%20membrane%20damage%20by%20a%20light-powered%20molecular%20nanomotor&rft.jtitle=Journal%20of%20photochemistry%20and%20photobiology.%20B,%20Biology&rft.au=Firsov,%20Alexander%20M.&rft.date=2023-02&rft.volume=239&rft.spage=112633&rft.epage=112633&rft.pages=112633-112633&rft.artnum=112633&rft.issn=1011-1344&rft.eissn=1873-2682&rft_id=info:doi/10.1016/j.jphotobiol.2022.112633&rft_dat=%3Cproquest_cross%3E2761975280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761975280&rft_id=info:pmid/36608401&rfr_iscdi=true