Loading…
Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor
The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in v...
Saved in:
Published in: | Journal of photochemistry and photobiology. B, Biology Biology, 2023-02, Vol.239, p.112633-112633, Article 112633 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03 |
container_end_page | 112633 |
container_issue | |
container_start_page | 112633 |
container_title | Journal of photochemistry and photobiology. B, Biology |
container_volume | 239 |
creator | Firsov, Alexander M. Pfeffermann, Juergen Benditkis, Anton S. Rokitskaya, Tatyana I. Kozlov, Anton S. Kotova, Elena A. Krasnovsky, Alexander A. Pohl, Peter Antonenko, Yuri N. |
description | The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited “molecular drill” oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities.
•Claims about drilling lipid bilayers by light-powered motors violate the laws of membrane elasticity.•Testing one of these “drilling” molecular motors, M3, we found singlet oxygen phosphorescence.•M3-induced photooxidation permeabilizes vesicles made of unsaturated but not saturated lipids.•Inhibitors of photooxidation protect the membrane barrier from “drilling” by M3.•Singlet oxygen scavengers suppress M3-sensitized gramicidin channel photoinactivation. |
doi_str_mv | 10.1016/j.jphotobiol.2022.112633 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2761975280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1011134422002482</els_id><sourcerecordid>2761975280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03</originalsourceid><addsrcrecordid>eNqFkE1v3CAQhlHUKN9_IeLYizd8rW2ObdQ2kSK1h-aMMAxrVmC2gBPtv49XmzbHzoU5PDPv8CCEKVlRQtu77Wq7G1NNg09hxQhjK0pZy_kJuqB9xxvW9uzT0hNKG8qFOEeXpWzJUuu2O0PnvG1JLwi9QOOvwx67n3T0BmtT_Yuve5x1HSHjOuoJ2-xD8NMGGz0XKDhCHLKeAFsd9QbwsMcaB78Za7NLr5DB4pgCmDnojCc9pbgk5Gt06nQocPP-XqHn799-3z80Tz9_PN5_eWqMYKI2snfcWScccQJsxy3X3EmQawvASLcWIC2TpBVCDxoGKS3nVhK2QFQ6S_gV-nzcu8vpzwylquiLgRCWi9NcFOtaKrs16w9of0RNTqVkcGqXfdR5ryhRB89qqz48q4NndfS8jN6-p8xDBPtv8K_YBfh6BGD564uHrIrxMBmwPoOpyib__5Q3SS-WeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761975280</pqid></control><display><type>article</type><title>Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor</title><source>Elsevier</source><creator>Firsov, Alexander M. ; Pfeffermann, Juergen ; Benditkis, Anton S. ; Rokitskaya, Tatyana I. ; Kozlov, Anton S. ; Kotova, Elena A. ; Krasnovsky, Alexander A. ; Pohl, Peter ; Antonenko, Yuri N.</creator><creatorcontrib>Firsov, Alexander M. ; Pfeffermann, Juergen ; Benditkis, Anton S. ; Rokitskaya, Tatyana I. ; Kozlov, Anton S. ; Kotova, Elena A. ; Krasnovsky, Alexander A. ; Pohl, Peter ; Antonenko, Yuri N.</creatorcontrib><description>The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited “molecular drill” oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities.
•Claims about drilling lipid bilayers by light-powered motors violate the laws of membrane elasticity.•Testing one of these “drilling” molecular motors, M3, we found singlet oxygen phosphorescence.•M3-induced photooxidation permeabilizes vesicles made of unsaturated but not saturated lipids.•Inhibitors of photooxidation protect the membrane barrier from “drilling” by M3.•Singlet oxygen scavengers suppress M3-sensitized gramicidin channel photoinactivation.</description><identifier>ISSN: 1011-1344</identifier><identifier>EISSN: 1873-2682</identifier><identifier>DOI: 10.1016/j.jphotobiol.2022.112633</identifier><identifier>PMID: 36608401</identifier><language>eng</language><publisher>Switzerland: Elsevier B.V</publisher><subject>Artificial molecular motors ; Cell Membrane ; Gramicidin - chemistry ; Gramicidin - pharmacology ; Lipid Bilayers - chemistry ; Lipid peroxidation ; Nanomotor ; Photodynamic ; Photosensitizer ; Singlet oxygen ; Singlet Oxygen - chemistry ; Unilamellar Liposomes</subject><ispartof>Journal of photochemistry and photobiology. B, Biology, 2023-02, Vol.239, p.112633-112633, Article 112633</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03</citedby><cites>FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36608401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Firsov, Alexander M.</creatorcontrib><creatorcontrib>Pfeffermann, Juergen</creatorcontrib><creatorcontrib>Benditkis, Anton S.</creatorcontrib><creatorcontrib>Rokitskaya, Tatyana I.</creatorcontrib><creatorcontrib>Kozlov, Anton S.</creatorcontrib><creatorcontrib>Kotova, Elena A.</creatorcontrib><creatorcontrib>Krasnovsky, Alexander A.</creatorcontrib><creatorcontrib>Pohl, Peter</creatorcontrib><creatorcontrib>Antonenko, Yuri N.</creatorcontrib><title>Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor</title><title>Journal of photochemistry and photobiology. B, Biology</title><addtitle>J Photochem Photobiol B</addtitle><description>The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited “molecular drill” oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities.
•Claims about drilling lipid bilayers by light-powered motors violate the laws of membrane elasticity.•Testing one of these “drilling” molecular motors, M3, we found singlet oxygen phosphorescence.•M3-induced photooxidation permeabilizes vesicles made of unsaturated but not saturated lipids.•Inhibitors of photooxidation protect the membrane barrier from “drilling” by M3.•Singlet oxygen scavengers suppress M3-sensitized gramicidin channel photoinactivation.</description><subject>Artificial molecular motors</subject><subject>Cell Membrane</subject><subject>Gramicidin - chemistry</subject><subject>Gramicidin - pharmacology</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid peroxidation</subject><subject>Nanomotor</subject><subject>Photodynamic</subject><subject>Photosensitizer</subject><subject>Singlet oxygen</subject><subject>Singlet Oxygen - chemistry</subject><subject>Unilamellar Liposomes</subject><issn>1011-1344</issn><issn>1873-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v3CAQhlHUKN9_IeLYizd8rW2ObdQ2kSK1h-aMMAxrVmC2gBPtv49XmzbHzoU5PDPv8CCEKVlRQtu77Wq7G1NNg09hxQhjK0pZy_kJuqB9xxvW9uzT0hNKG8qFOEeXpWzJUuu2O0PnvG1JLwi9QOOvwx67n3T0BmtT_Yuve5x1HSHjOuoJ2-xD8NMGGz0XKDhCHLKeAFsd9QbwsMcaB78Za7NLr5DB4pgCmDnojCc9pbgk5Gt06nQocPP-XqHn799-3z80Tz9_PN5_eWqMYKI2snfcWScccQJsxy3X3EmQawvASLcWIC2TpBVCDxoGKS3nVhK2QFQ6S_gV-nzcu8vpzwylquiLgRCWi9NcFOtaKrs16w9of0RNTqVkcGqXfdR5ryhRB89qqz48q4NndfS8jN6-p8xDBPtv8K_YBfh6BGD564uHrIrxMBmwPoOpyib__5Q3SS-WeA</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Firsov, Alexander M.</creator><creator>Pfeffermann, Juergen</creator><creator>Benditkis, Anton S.</creator><creator>Rokitskaya, Tatyana I.</creator><creator>Kozlov, Anton S.</creator><creator>Kotova, Elena A.</creator><creator>Krasnovsky, Alexander A.</creator><creator>Pohl, Peter</creator><creator>Antonenko, Yuri N.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202302</creationdate><title>Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor</title><author>Firsov, Alexander M. ; Pfeffermann, Juergen ; Benditkis, Anton S. ; Rokitskaya, Tatyana I. ; Kozlov, Anton S. ; Kotova, Elena A. ; Krasnovsky, Alexander A. ; Pohl, Peter ; Antonenko, Yuri N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial molecular motors</topic><topic>Cell Membrane</topic><topic>Gramicidin - chemistry</topic><topic>Gramicidin - pharmacology</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid peroxidation</topic><topic>Nanomotor</topic><topic>Photodynamic</topic><topic>Photosensitizer</topic><topic>Singlet oxygen</topic><topic>Singlet Oxygen - chemistry</topic><topic>Unilamellar Liposomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Firsov, Alexander M.</creatorcontrib><creatorcontrib>Pfeffermann, Juergen</creatorcontrib><creatorcontrib>Benditkis, Anton S.</creatorcontrib><creatorcontrib>Rokitskaya, Tatyana I.</creatorcontrib><creatorcontrib>Kozlov, Anton S.</creatorcontrib><creatorcontrib>Kotova, Elena A.</creatorcontrib><creatorcontrib>Krasnovsky, Alexander A.</creatorcontrib><creatorcontrib>Pohl, Peter</creatorcontrib><creatorcontrib>Antonenko, Yuri N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of photochemistry and photobiology. B, Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Firsov, Alexander M.</au><au>Pfeffermann, Juergen</au><au>Benditkis, Anton S.</au><au>Rokitskaya, Tatyana I.</au><au>Kozlov, Anton S.</au><au>Kotova, Elena A.</au><au>Krasnovsky, Alexander A.</au><au>Pohl, Peter</au><au>Antonenko, Yuri N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor</atitle><jtitle>Journal of photochemistry and photobiology. B, Biology</jtitle><addtitle>J Photochem Photobiol B</addtitle><date>2023-02</date><risdate>2023</risdate><volume>239</volume><spage>112633</spage><epage>112633</epage><pages>112633-112633</pages><artnum>112633</artnum><issn>1011-1344</issn><eissn>1873-2682</eissn><abstract>The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited “molecular drill” oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities.
•Claims about drilling lipid bilayers by light-powered motors violate the laws of membrane elasticity.•Testing one of these “drilling” molecular motors, M3, we found singlet oxygen phosphorescence.•M3-induced photooxidation permeabilizes vesicles made of unsaturated but not saturated lipids.•Inhibitors of photooxidation protect the membrane barrier from “drilling” by M3.•Singlet oxygen scavengers suppress M3-sensitized gramicidin channel photoinactivation.</abstract><cop>Switzerland</cop><pub>Elsevier B.V</pub><pmid>36608401</pmid><doi>10.1016/j.jphotobiol.2022.112633</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-1344 |
ispartof | Journal of photochemistry and photobiology. B, Biology, 2023-02, Vol.239, p.112633-112633, Article 112633 |
issn | 1011-1344 1873-2682 |
language | eng |
recordid | cdi_proquest_miscellaneous_2761975280 |
source | Elsevier |
subjects | Artificial molecular motors Cell Membrane Gramicidin - chemistry Gramicidin - pharmacology Lipid Bilayers - chemistry Lipid peroxidation Nanomotor Photodynamic Photosensitizer Singlet oxygen Singlet Oxygen - chemistry Unilamellar Liposomes |
title | Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photodynamic%20activity%20rather%20than%20drilling%20causes%20membrane%20damage%20by%20a%20light-powered%20molecular%20nanomotor&rft.jtitle=Journal%20of%20photochemistry%20and%20photobiology.%20B,%20Biology&rft.au=Firsov,%20Alexander%20M.&rft.date=2023-02&rft.volume=239&rft.spage=112633&rft.epage=112633&rft.pages=112633-112633&rft.artnum=112633&rft.issn=1011-1344&rft.eissn=1873-2682&rft_id=info:doi/10.1016/j.jphotobiol.2022.112633&rft_dat=%3Cproquest_cross%3E2761975280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-98f3fdf4f0f4ed73d3a3f9e95dee20754e9d290644abaeb99d33d9023f919fd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761975280&rft_id=info:pmid/36608401&rfr_iscdi=true |