Loading…
Automated analysis of small intestinal lamina propria to distinguish normal, Celiac Disease, and Non-Celiac Duodenitis biopsy images
•Computational, image-based analysis of the small intestinal lamina propria in Celiac Disease and Non-Celiac Duodenitis (and comparison with non-inflamed lamina propria).•Clinical dataset comprised from biopsy images of different disease stages.•Tidily controlled feature engineering with Pyramid His...
Saved in:
Published in: | Computer methods and programs in biomedicine 2023-03, Vol.230, p.107320-107320, Article 107320 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-9583538f5ff372126d7d6411dacde5597dcbccf7f702fa83f77770d1e1d4d0a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-9583538f5ff372126d7d6411dacde5597dcbccf7f702fa83f77770d1e1d4d0a3 |
container_end_page | 107320 |
container_issue | |
container_start_page | 107320 |
container_title | Computer methods and programs in biomedicine |
container_volume | 230 |
creator | Faust, Oliver De Michele, Simona Koh, Joel EW Jahmunah, V Lih, Oh Shu Kamath, Aditya P Barua, Prabal Datta Ciaccio, Edward J. Lewis, Suzanne K. Green, Peter H. Bhagat, Govind Acharya, U. Rajendra |
description | •Computational, image-based analysis of the small intestinal lamina propria in Celiac Disease and Non-Celiac Duodenitis (and comparison with non-inflamed lamina propria).•Clinical dataset comprised from biopsy images of different disease stages.•Tidily controlled feature engineering with Pyramid Histogram of Gradient algorithms coupled with classification and explainability assessment.•Result validation and interpretation by medical experts.
Celiac Disease (CD) is characterized by gluten intolerance in genetically predisposed individuals. High disease prevalence, absence of a cure, and low diagnosis rates make this disease a public health problem. The diagnosis of CD predominantly relies on recognizing characteristic mucosal alterations of the small intestine, such as villous atrophy, crypt hyperplasia, and intraepithelial lymphocytosis. However, these changes are not entirely specific to CD and overlap with Non-Celiac Duodenitis (NCD) due to various etiologies. We investigated whether Artificial Intelligence (AI) models could assist in distinguishing normal, CD, and NCD (and unaffected individuals) based on the characteristics of small intestinal lamina propria (LP).
Our method was developed using a dataset comprising high magnification biopsy images of the duodenal LP compartment of CD patients with different clinical stages of CD, those with NCD, and individuals lacking an intestinal inflammatory disorder (controls). A pre-processing step was used to standardize and enhance the acquired images.
For the normal controls versus CD use case, a Support Vector Machine (SVM) achieved an Accuracy (ACC) of 98.53%. For a second use case, we investigated the ability of the classification algorithm to differentiate between normal controls and NCD. In this use case, the SVM algorithm with linear kernel outperformed all the tested classifiers by achieving 98.55% ACC.
To the best of our knowledge, this is the first study that documents automated differentiation between normal, NCD, and CD biopsy images. These findings are a stepping stone toward automated biopsy image analysis that can significantly benefit patients and healthcare providers. |
doi_str_mv | 10.1016/j.cmpb.2022.107320 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2761977325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260722007015</els_id><sourcerecordid>2761977325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-9583538f5ff372126d7d6411dacde5597dcbccf7f702fa83f77770d1e1d4d0a3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EgvL4AxyQjxxIsZ3aTiQuqDwlBBfulmuvwVUSl2yC1Ds_HFcFjviy0npmVvMRcsrZlDOuLpdT164WU8GEyAtdCrZDJrzSotBSyV0yyaK6EIrpA3KIuGSMCSnVPjkolWLVTNQT8nU9Dqm1A3hqO9usMSJNgWJrm4bGbgAcYt7TxrZ50lWfVn20dEjUx83X2xjxnXapz4YLOocmWkdvIoJFuMiRnj6nrvjdj8lDF4d8YxHTCtc0tvYN8JjsBdsgnPzMI_J6d_s6fyieXu4f59dPhZsxNhS1rEpZVkGGUGrBhfLaqxnn3joPUtbau4VzQQfNRLBVGXR-zHPgfuaZLY_I-TY2t_gYczPTRnTQNLaDNKIRWvFaZ44yS8VW6vqE2EMwuXZr-7XhzGzgm6XZwDcb-GYLP5vOfvLHRQv-z_JLOwuutgLIJT8j9AZdhM6Bjz24wfgU_8v_BotYl4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761977325</pqid></control><display><type>article</type><title>Automated analysis of small intestinal lamina propria to distinguish normal, Celiac Disease, and Non-Celiac Duodenitis biopsy images</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Faust, Oliver ; De Michele, Simona ; Koh, Joel EW ; Jahmunah, V ; Lih, Oh Shu ; Kamath, Aditya P ; Barua, Prabal Datta ; Ciaccio, Edward J. ; Lewis, Suzanne K. ; Green, Peter H. ; Bhagat, Govind ; Acharya, U. Rajendra</creator><creatorcontrib>Faust, Oliver ; De Michele, Simona ; Koh, Joel EW ; Jahmunah, V ; Lih, Oh Shu ; Kamath, Aditya P ; Barua, Prabal Datta ; Ciaccio, Edward J. ; Lewis, Suzanne K. ; Green, Peter H. ; Bhagat, Govind ; Acharya, U. Rajendra</creatorcontrib><description>•Computational, image-based analysis of the small intestinal lamina propria in Celiac Disease and Non-Celiac Duodenitis (and comparison with non-inflamed lamina propria).•Clinical dataset comprised from biopsy images of different disease stages.•Tidily controlled feature engineering with Pyramid Histogram of Gradient algorithms coupled with classification and explainability assessment.•Result validation and interpretation by medical experts.
Celiac Disease (CD) is characterized by gluten intolerance in genetically predisposed individuals. High disease prevalence, absence of a cure, and low diagnosis rates make this disease a public health problem. The diagnosis of CD predominantly relies on recognizing characteristic mucosal alterations of the small intestine, such as villous atrophy, crypt hyperplasia, and intraepithelial lymphocytosis. However, these changes are not entirely specific to CD and overlap with Non-Celiac Duodenitis (NCD) due to various etiologies. We investigated whether Artificial Intelligence (AI) models could assist in distinguishing normal, CD, and NCD (and unaffected individuals) based on the characteristics of small intestinal lamina propria (LP).
Our method was developed using a dataset comprising high magnification biopsy images of the duodenal LP compartment of CD patients with different clinical stages of CD, those with NCD, and individuals lacking an intestinal inflammatory disorder (controls). A pre-processing step was used to standardize and enhance the acquired images.
For the normal controls versus CD use case, a Support Vector Machine (SVM) achieved an Accuracy (ACC) of 98.53%. For a second use case, we investigated the ability of the classification algorithm to differentiate between normal controls and NCD. In this use case, the SVM algorithm with linear kernel outperformed all the tested classifiers by achieving 98.55% ACC.
To the best of our knowledge, this is the first study that documents automated differentiation between normal, NCD, and CD biopsy images. These findings are a stepping stone toward automated biopsy image analysis that can significantly benefit patients and healthcare providers.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2022.107320</identifier><identifier>PMID: 36608429</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Artificial Intelligence ; Biopsy ; Celiac Disease ; Celiac Disease - diagnosis ; Computer-aided diagnosis ; Duodenitis - diagnostic imaging ; Duodenitis - pathology ; Explainable artificial intelligence ; Humans ; Inflammation ; Intestinal Mucosa - diagnostic imaging ; Lamina propria ; Noncommunicable Diseases</subject><ispartof>Computer methods and programs in biomedicine, 2023-03, Vol.230, p.107320-107320, Article 107320</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-9583538f5ff372126d7d6411dacde5597dcbccf7f702fa83f77770d1e1d4d0a3</citedby><cites>FETCH-LOGICAL-c400t-9583538f5ff372126d7d6411dacde5597dcbccf7f702fa83f77770d1e1d4d0a3</cites><orcidid>0000-0002-3979-4077 ; 0000-0002-1424-8248 ; 0000-0002-0091-6049 ; 0000-0001-6250-048X ; 0000-0003-4892-810X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36608429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faust, Oliver</creatorcontrib><creatorcontrib>De Michele, Simona</creatorcontrib><creatorcontrib>Koh, Joel EW</creatorcontrib><creatorcontrib>Jahmunah, V</creatorcontrib><creatorcontrib>Lih, Oh Shu</creatorcontrib><creatorcontrib>Kamath, Aditya P</creatorcontrib><creatorcontrib>Barua, Prabal Datta</creatorcontrib><creatorcontrib>Ciaccio, Edward J.</creatorcontrib><creatorcontrib>Lewis, Suzanne K.</creatorcontrib><creatorcontrib>Green, Peter H.</creatorcontrib><creatorcontrib>Bhagat, Govind</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><title>Automated analysis of small intestinal lamina propria to distinguish normal, Celiac Disease, and Non-Celiac Duodenitis biopsy images</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>•Computational, image-based analysis of the small intestinal lamina propria in Celiac Disease and Non-Celiac Duodenitis (and comparison with non-inflamed lamina propria).•Clinical dataset comprised from biopsy images of different disease stages.•Tidily controlled feature engineering with Pyramid Histogram of Gradient algorithms coupled with classification and explainability assessment.•Result validation and interpretation by medical experts.
Celiac Disease (CD) is characterized by gluten intolerance in genetically predisposed individuals. High disease prevalence, absence of a cure, and low diagnosis rates make this disease a public health problem. The diagnosis of CD predominantly relies on recognizing characteristic mucosal alterations of the small intestine, such as villous atrophy, crypt hyperplasia, and intraepithelial lymphocytosis. However, these changes are not entirely specific to CD and overlap with Non-Celiac Duodenitis (NCD) due to various etiologies. We investigated whether Artificial Intelligence (AI) models could assist in distinguishing normal, CD, and NCD (and unaffected individuals) based on the characteristics of small intestinal lamina propria (LP).
Our method was developed using a dataset comprising high magnification biopsy images of the duodenal LP compartment of CD patients with different clinical stages of CD, those with NCD, and individuals lacking an intestinal inflammatory disorder (controls). A pre-processing step was used to standardize and enhance the acquired images.
For the normal controls versus CD use case, a Support Vector Machine (SVM) achieved an Accuracy (ACC) of 98.53%. For a second use case, we investigated the ability of the classification algorithm to differentiate between normal controls and NCD. In this use case, the SVM algorithm with linear kernel outperformed all the tested classifiers by achieving 98.55% ACC.
To the best of our knowledge, this is the first study that documents automated differentiation between normal, NCD, and CD biopsy images. These findings are a stepping stone toward automated biopsy image analysis that can significantly benefit patients and healthcare providers.</description><subject>Artificial Intelligence</subject><subject>Biopsy</subject><subject>Celiac Disease</subject><subject>Celiac Disease - diagnosis</subject><subject>Computer-aided diagnosis</subject><subject>Duodenitis - diagnostic imaging</subject><subject>Duodenitis - pathology</subject><subject>Explainable artificial intelligence</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Intestinal Mucosa - diagnostic imaging</subject><subject>Lamina propria</subject><subject>Noncommunicable Diseases</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EgvL4AxyQjxxIsZ3aTiQuqDwlBBfulmuvwVUSl2yC1Ds_HFcFjviy0npmVvMRcsrZlDOuLpdT164WU8GEyAtdCrZDJrzSotBSyV0yyaK6EIrpA3KIuGSMCSnVPjkolWLVTNQT8nU9Dqm1A3hqO9usMSJNgWJrm4bGbgAcYt7TxrZ50lWfVn20dEjUx83X2xjxnXapz4YLOocmWkdvIoJFuMiRnj6nrvjdj8lDF4d8YxHTCtc0tvYN8JjsBdsgnPzMI_J6d_s6fyieXu4f59dPhZsxNhS1rEpZVkGGUGrBhfLaqxnn3joPUtbau4VzQQfNRLBVGXR-zHPgfuaZLY_I-TY2t_gYczPTRnTQNLaDNKIRWvFaZ44yS8VW6vqE2EMwuXZr-7XhzGzgm6XZwDcb-GYLP5vOfvLHRQv-z_JLOwuutgLIJT8j9AZdhM6Bjz24wfgU_8v_BotYl4s</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Faust, Oliver</creator><creator>De Michele, Simona</creator><creator>Koh, Joel EW</creator><creator>Jahmunah, V</creator><creator>Lih, Oh Shu</creator><creator>Kamath, Aditya P</creator><creator>Barua, Prabal Datta</creator><creator>Ciaccio, Edward J.</creator><creator>Lewis, Suzanne K.</creator><creator>Green, Peter H.</creator><creator>Bhagat, Govind</creator><creator>Acharya, U. Rajendra</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3979-4077</orcidid><orcidid>https://orcid.org/0000-0002-1424-8248</orcidid><orcidid>https://orcid.org/0000-0002-0091-6049</orcidid><orcidid>https://orcid.org/0000-0001-6250-048X</orcidid><orcidid>https://orcid.org/0000-0003-4892-810X</orcidid></search><sort><creationdate>202303</creationdate><title>Automated analysis of small intestinal lamina propria to distinguish normal, Celiac Disease, and Non-Celiac Duodenitis biopsy images</title><author>Faust, Oliver ; De Michele, Simona ; Koh, Joel EW ; Jahmunah, V ; Lih, Oh Shu ; Kamath, Aditya P ; Barua, Prabal Datta ; Ciaccio, Edward J. ; Lewis, Suzanne K. ; Green, Peter H. ; Bhagat, Govind ; Acharya, U. Rajendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-9583538f5ff372126d7d6411dacde5597dcbccf7f702fa83f77770d1e1d4d0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Biopsy</topic><topic>Celiac Disease</topic><topic>Celiac Disease - diagnosis</topic><topic>Computer-aided diagnosis</topic><topic>Duodenitis - diagnostic imaging</topic><topic>Duodenitis - pathology</topic><topic>Explainable artificial intelligence</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Intestinal Mucosa - diagnostic imaging</topic><topic>Lamina propria</topic><topic>Noncommunicable Diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faust, Oliver</creatorcontrib><creatorcontrib>De Michele, Simona</creatorcontrib><creatorcontrib>Koh, Joel EW</creatorcontrib><creatorcontrib>Jahmunah, V</creatorcontrib><creatorcontrib>Lih, Oh Shu</creatorcontrib><creatorcontrib>Kamath, Aditya P</creatorcontrib><creatorcontrib>Barua, Prabal Datta</creatorcontrib><creatorcontrib>Ciaccio, Edward J.</creatorcontrib><creatorcontrib>Lewis, Suzanne K.</creatorcontrib><creatorcontrib>Green, Peter H.</creatorcontrib><creatorcontrib>Bhagat, Govind</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faust, Oliver</au><au>De Michele, Simona</au><au>Koh, Joel EW</au><au>Jahmunah, V</au><au>Lih, Oh Shu</au><au>Kamath, Aditya P</au><au>Barua, Prabal Datta</au><au>Ciaccio, Edward J.</au><au>Lewis, Suzanne K.</au><au>Green, Peter H.</au><au>Bhagat, Govind</au><au>Acharya, U. Rajendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated analysis of small intestinal lamina propria to distinguish normal, Celiac Disease, and Non-Celiac Duodenitis biopsy images</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2023-03</date><risdate>2023</risdate><volume>230</volume><spage>107320</spage><epage>107320</epage><pages>107320-107320</pages><artnum>107320</artnum><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>•Computational, image-based analysis of the small intestinal lamina propria in Celiac Disease and Non-Celiac Duodenitis (and comparison with non-inflamed lamina propria).•Clinical dataset comprised from biopsy images of different disease stages.•Tidily controlled feature engineering with Pyramid Histogram of Gradient algorithms coupled with classification and explainability assessment.•Result validation and interpretation by medical experts.
Celiac Disease (CD) is characterized by gluten intolerance in genetically predisposed individuals. High disease prevalence, absence of a cure, and low diagnosis rates make this disease a public health problem. The diagnosis of CD predominantly relies on recognizing characteristic mucosal alterations of the small intestine, such as villous atrophy, crypt hyperplasia, and intraepithelial lymphocytosis. However, these changes are not entirely specific to CD and overlap with Non-Celiac Duodenitis (NCD) due to various etiologies. We investigated whether Artificial Intelligence (AI) models could assist in distinguishing normal, CD, and NCD (and unaffected individuals) based on the characteristics of small intestinal lamina propria (LP).
Our method was developed using a dataset comprising high magnification biopsy images of the duodenal LP compartment of CD patients with different clinical stages of CD, those with NCD, and individuals lacking an intestinal inflammatory disorder (controls). A pre-processing step was used to standardize and enhance the acquired images.
For the normal controls versus CD use case, a Support Vector Machine (SVM) achieved an Accuracy (ACC) of 98.53%. For a second use case, we investigated the ability of the classification algorithm to differentiate between normal controls and NCD. In this use case, the SVM algorithm with linear kernel outperformed all the tested classifiers by achieving 98.55% ACC.
To the best of our knowledge, this is the first study that documents automated differentiation between normal, NCD, and CD biopsy images. These findings are a stepping stone toward automated biopsy image analysis that can significantly benefit patients and healthcare providers.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>36608429</pmid><doi>10.1016/j.cmpb.2022.107320</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3979-4077</orcidid><orcidid>https://orcid.org/0000-0002-1424-8248</orcidid><orcidid>https://orcid.org/0000-0002-0091-6049</orcidid><orcidid>https://orcid.org/0000-0001-6250-048X</orcidid><orcidid>https://orcid.org/0000-0003-4892-810X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 2023-03, Vol.230, p.107320-107320, Article 107320 |
issn | 0169-2607 1872-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_2761977325 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Artificial Intelligence Biopsy Celiac Disease Celiac Disease - diagnosis Computer-aided diagnosis Duodenitis - diagnostic imaging Duodenitis - pathology Explainable artificial intelligence Humans Inflammation Intestinal Mucosa - diagnostic imaging Lamina propria Noncommunicable Diseases |
title | Automated analysis of small intestinal lamina propria to distinguish normal, Celiac Disease, and Non-Celiac Duodenitis biopsy images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20analysis%20of%20small%20intestinal%20lamina%20propria%20to%20distinguish%20normal,%20Celiac%20Disease,%20and%20Non-Celiac%20Duodenitis%20biopsy%20images&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Faust,%20Oliver&rft.date=2023-03&rft.volume=230&rft.spage=107320&rft.epage=107320&rft.pages=107320-107320&rft.artnum=107320&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2022.107320&rft_dat=%3Cproquest_cross%3E2761977325%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-9583538f5ff372126d7d6411dacde5597dcbccf7f702fa83f77770d1e1d4d0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761977325&rft_id=info:pmid/36608429&rfr_iscdi=true |