Loading…
A neural-fuzzy system for congestion control in ATM networks
We propose the use of a neural-fuzzy scheme for rate-based feedback congestion control in asynchronous transfer mode (ATM) networks. Available bit rate (ABR) traffic is not guaranteed quality of service (QoS) in the setup connection, and it can dynamically share the available bandwidth. Therefore, c...
Saved in:
Published in: | IEEE transactions on cybernetics 2000-02, Vol.30 (1), p.2-9 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose the use of a neural-fuzzy scheme for rate-based feedback congestion control in asynchronous transfer mode (ATM) networks. Available bit rate (ABR) traffic is not guaranteed quality of service (QoS) in the setup connection, and it can dynamically share the available bandwidth. Therefore, congestion can be controlled by regulating the source rate, to a certain degree, according to the current traffic flow. Traditional methods perform congestion control by monitoring the queue length. The source rate is decreased by a fixed rate when the queue length is greater than a prespecified threshold. However, it is difficult to get a suitable rate according to the degree of traffic congestion. We employ a neural-fuzzy mechanism to control the source rate. Through learning, membership values can be generated and cell loss can be predicted from the status of the queue length. Then, an explicit rate is calculated and the source rate is controlled appropriately. Simulation results have shown that our method is effective compared with traditional methods. |
---|---|
ISSN: | 1083-4419 2168-2267 1941-0492 2168-2275 |
DOI: | 10.1109/3477.826942 |