Loading…

Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys

Yield strength at ambient temperature and creep resistance between 225 and 300°C were investigated in dilute Al(Sc) alloys containing coherent Al 3Sc precipitates, which were grown by heat-treatments to radii in the range 1.4–9.6 nm. The dependence of the ambient-temperature yield stress on precipit...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2002-09, Vol.50 (16), p.4021-4035
Main Authors: Seidman, David N., Marquis, Emmanuelle A., Dunand, David C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-7849f49ae5429e1861059f23c3b30d8e743471c4bc797745aa603b8e2d9ab1f73
cites cdi_FETCH-LOGICAL-c486t-7849f49ae5429e1861059f23c3b30d8e743471c4bc797745aa603b8e2d9ab1f73
container_end_page 4035
container_issue 16
container_start_page 4021
container_title Acta materialia
container_volume 50
creator Seidman, David N.
Marquis, Emmanuelle A.
Dunand, David C.
description Yield strength at ambient temperature and creep resistance between 225 and 300°C were investigated in dilute Al(Sc) alloys containing coherent Al 3Sc precipitates, which were grown by heat-treatments to radii in the range 1.4–9.6 nm. The dependence of the ambient-temperature yield stress on precipitate size is explained using classical precipitation strengthening theory, which predicts a transition from precipitate shearing to Orowan dislocation looping mechanisms at a precipitate radius of 2.1 nm, in good agreement with experimental data. At 300°C creep threshold stresses are observed and found to be much lower than the yield stresses, indicative of a climb-controlled bypass mechanism. The threshold stress increases with increasing precipitate radius, in qualitative agreement with a climb model taking into account stiffness and lattice mismatches between matrix and precipitates [1].
doi_str_mv 10.1016/S1359-6454(02)00201-X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27639596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964540200201X</els_id><sourcerecordid>27639596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-7849f49ae5429e1861059f23c3b30d8e743471c4bc797745aa603b8e2d9ab1f73</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhosoqKs_QchF0UM1X22ak8jiFwgKq-AtTtOpRrLtmmQF_73RVTx6mjk877zMUxR7jB4zyuqTGROVLmtZyUPKjyjllJWPa8UWa5QouazEet5_kc1iO8ZXShlXkm4VT3cBrVu4BMmNA4kp4PCcXnBwwzOBRGDeOhzyHDqCHt8hYUcSzhcYIC0DRjL25AUhlTkJCVqP5MwfzuwRAe_Hj7hTbPTgI-7-zEnxcHF-P70qb24vr6dnN6WVTZ1K1UjdSw1YSa6RNTWjle65sKIVtGtQSSEVs7K1SislK4CairZB3mloWa_EpDhY3V2E8W2JMZm5ixa9hwHHZTRc1UJXus5gtQJtGGMM2JtFcHMIH4ZR8-XTfPs0X7IM5ebbp3nMuf2fAogWfB9gsC7-hYVmtKlF5k5XHOZv3x0GE21WaLFzWXUy3ej-afoEV5OKZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27639596</pqid></control><display><type>article</type><title>Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys</title><source>ScienceDirect Freedom Collection</source><creator>Seidman, David N. ; Marquis, Emmanuelle A. ; Dunand, David C.</creator><creatorcontrib>Seidman, David N. ; Marquis, Emmanuelle A. ; Dunand, David C.</creatorcontrib><description>Yield strength at ambient temperature and creep resistance between 225 and 300°C were investigated in dilute Al(Sc) alloys containing coherent Al 3Sc precipitates, which were grown by heat-treatments to radii in the range 1.4–9.6 nm. The dependence of the ambient-temperature yield stress on precipitate size is explained using classical precipitation strengthening theory, which predicts a transition from precipitate shearing to Orowan dislocation looping mechanisms at a precipitate radius of 2.1 nm, in good agreement with experimental data. At 300°C creep threshold stresses are observed and found to be much lower than the yield stresses, indicative of a climb-controlled bypass mechanism. The threshold stress increases with increasing precipitate radius, in qualitative agreement with a climb model taking into account stiffness and lattice mismatches between matrix and precipitates [1].</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/S1359-6454(02)00201-X</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum alloys ; Applied sciences ; Creep ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Mechanical properties ; Metals. Metallurgy ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Precipitation ; Precipitation strengthening ; Scandium ; Solid-phase precipitation ; Threshold stress</subject><ispartof>Acta materialia, 2002-09, Vol.50 (16), p.4021-4035</ispartof><rights>2002 Acta Materialia Inc.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-7849f49ae5429e1861059f23c3b30d8e743471c4bc797745aa603b8e2d9ab1f73</citedby><cites>FETCH-LOGICAL-c486t-7849f49ae5429e1861059f23c3b30d8e743471c4bc797745aa603b8e2d9ab1f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13910863$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seidman, David N.</creatorcontrib><creatorcontrib>Marquis, Emmanuelle A.</creatorcontrib><creatorcontrib>Dunand, David C.</creatorcontrib><title>Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys</title><title>Acta materialia</title><description>Yield strength at ambient temperature and creep resistance between 225 and 300°C were investigated in dilute Al(Sc) alloys containing coherent Al 3Sc precipitates, which were grown by heat-treatments to radii in the range 1.4–9.6 nm. The dependence of the ambient-temperature yield stress on precipitate size is explained using classical precipitation strengthening theory, which predicts a transition from precipitate shearing to Orowan dislocation looping mechanisms at a precipitate radius of 2.1 nm, in good agreement with experimental data. At 300°C creep threshold stresses are observed and found to be much lower than the yield stresses, indicative of a climb-controlled bypass mechanism. The threshold stress increases with increasing precipitate radius, in qualitative agreement with a climb model taking into account stiffness and lattice mismatches between matrix and precipitates [1].</description><subject>Aluminum alloys</subject><subject>Applied sciences</subject><subject>Creep</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Metals. Metallurgy</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Precipitation strengthening</subject><subject>Scandium</subject><subject>Solid-phase precipitation</subject><subject>Threshold stress</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhosoqKs_QchF0UM1X22ak8jiFwgKq-AtTtOpRrLtmmQF_73RVTx6mjk877zMUxR7jB4zyuqTGROVLmtZyUPKjyjllJWPa8UWa5QouazEet5_kc1iO8ZXShlXkm4VT3cBrVu4BMmNA4kp4PCcXnBwwzOBRGDeOhzyHDqCHt8hYUcSzhcYIC0DRjL25AUhlTkJCVqP5MwfzuwRAe_Hj7hTbPTgI-7-zEnxcHF-P70qb24vr6dnN6WVTZ1K1UjdSw1YSa6RNTWjle65sKIVtGtQSSEVs7K1SislK4CairZB3mloWa_EpDhY3V2E8W2JMZm5ixa9hwHHZTRc1UJXus5gtQJtGGMM2JtFcHMIH4ZR8-XTfPs0X7IM5ebbp3nMuf2fAogWfB9gsC7-hYVmtKlF5k5XHOZv3x0GE21WaLFzWXUy3ej-afoEV5OKZg</recordid><startdate>20020920</startdate><enddate>20020920</enddate><creator>Seidman, David N.</creator><creator>Marquis, Emmanuelle A.</creator><creator>Dunand, David C.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020920</creationdate><title>Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys</title><author>Seidman, David N. ; Marquis, Emmanuelle A. ; Dunand, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-7849f49ae5429e1861059f23c3b30d8e743471c4bc797745aa603b8e2d9ab1f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aluminum alloys</topic><topic>Applied sciences</topic><topic>Creep</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Metals. Metallurgy</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Precipitation strengthening</topic><topic>Scandium</topic><topic>Solid-phase precipitation</topic><topic>Threshold stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seidman, David N.</creatorcontrib><creatorcontrib>Marquis, Emmanuelle A.</creatorcontrib><creatorcontrib>Dunand, David C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seidman, David N.</au><au>Marquis, Emmanuelle A.</au><au>Dunand, David C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys</atitle><jtitle>Acta materialia</jtitle><date>2002-09-20</date><risdate>2002</risdate><volume>50</volume><issue>16</issue><spage>4021</spage><epage>4035</epage><pages>4021-4035</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Yield strength at ambient temperature and creep resistance between 225 and 300°C were investigated in dilute Al(Sc) alloys containing coherent Al 3Sc precipitates, which were grown by heat-treatments to radii in the range 1.4–9.6 nm. The dependence of the ambient-temperature yield stress on precipitate size is explained using classical precipitation strengthening theory, which predicts a transition from precipitate shearing to Orowan dislocation looping mechanisms at a precipitate radius of 2.1 nm, in good agreement with experimental data. At 300°C creep threshold stresses are observed and found to be much lower than the yield stresses, indicative of a climb-controlled bypass mechanism. The threshold stress increases with increasing precipitate radius, in qualitative agreement with a climb model taking into account stiffness and lattice mismatches between matrix and precipitates [1].</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1359-6454(02)00201-X</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2002-09, Vol.50 (16), p.4021-4035
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_27639596
source ScienceDirect Freedom Collection
subjects Aluminum alloys
Applied sciences
Creep
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Mechanical properties
Metals. Metallurgy
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Precipitation
Precipitation strengthening
Scandium
Solid-phase precipitation
Threshold stress
title Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precipitation%20strengthening%20at%20ambient%20and%20elevated%20temperatures%20of%20heat-treatable%20Al(Sc)%20alloys&rft.jtitle=Acta%20materialia&rft.au=Seidman,%20David%20N.&rft.date=2002-09-20&rft.volume=50&rft.issue=16&rft.spage=4021&rft.epage=4035&rft.pages=4021-4035&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/S1359-6454(02)00201-X&rft_dat=%3Cproquest_cross%3E27639596%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-7849f49ae5429e1861059f23c3b30d8e743471c4bc797745aa603b8e2d9ab1f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27639596&rft_id=info:pmid/&rfr_iscdi=true