Loading…

Unitary p-wave interactions between fermions in an optical lattice

Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to unconventional superconductors and superfluids 1 – 3 . The realization of these states in controllable quantum systems, such as ultracold gases, could enable new types of quantum simulations 4 – 8 , topological quantum g...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2023-01, Vol.613 (7943), p.262-267
Main Authors: Venu, Vijin, Xu, Peihang, Mamaev, Mikhail, Corapi, Frank, Bilitewski, Thomas, D’Incao, Jose P., Fujiwara, Cora J., Rey, Ana Maria, Thywissen, Joseph H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-a3d0af15247cd921c14ee00def056afb1458e2d0f1e1d58c6c36ce09ca567f143
cites cdi_FETCH-LOGICAL-c375t-a3d0af15247cd921c14ee00def056afb1458e2d0f1e1d58c6c36ce09ca567f143
container_end_page 267
container_issue 7943
container_start_page 262
container_title Nature (London)
container_volume 613
creator Venu, Vijin
Xu, Peihang
Mamaev, Mikhail
Corapi, Frank
Bilitewski, Thomas
D’Incao, Jose P.
Fujiwara, Cora J.
Rey, Ana Maria
Thywissen, Joseph H.
description Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to unconventional superconductors and superfluids 1 – 3 . The realization of these states in controllable quantum systems, such as ultracold gases, could enable new types of quantum simulations 4 – 8 , topological quantum gates 9 – 11 and exotic few-body states 12 – 15 . However, p -wave and other antisymmetric interactions are weak in naturally occurring systems 16 , 17 , and their enhancement via Feshbach resonances in ultracold systems has been limited by three-body loss 18 – 24 . Here we create isolated pairs of spin-polarized fermionic atoms in a multiorbital three-dimensional optical lattice. We spectroscopically measure elastic p -wave interaction energies of strongly interacting pairs of atoms near a magnetic Feshbach resonance. The interaction strengths are widely tunable by the magnetic field and confinement strength, and yet collapse onto a universal curve when rescaled by the harmonic energy and length scales of a single lattice site. The absence of three-body processes enables the observation of elastic unitary p -wave interactions, as well as coherent oscillations between free-atom and interacting-pair states. All observations are compared both to an exact solution using a p -wave pseudopotential and to numerical solutions using an ab initio interaction potential. The understanding and control of on-site p -wave interactions provides a necessary component for the assembly of multiorbital lattice models 25 , 26 and a starting point for investigations of how to protect such systems from three-body recombination in the presence of tunnelling, for instance using Pauli blocking and lattice engineering 27 , 28 . The authors measure elastic p -wave interaction energies in pairs of fermionic atoms occupying the lowest two orbitals of an optical lattice; isolation of individual pairs of atoms protects against three-body recombination, enabling a theoretical maximum of interaction energy to be achieved.
doi_str_mv 10.1038/s41586-022-05405-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765070232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765345741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-a3d0af15247cd921c14ee00def056afb1458e2d0f1e1d58c6c36ce09ca567f143</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMotlb_gAsZcOMm-vI9XWrxCwpu7DqkmTcyZZqpyVTx3xvbquDCVUJy7n2PQ8gpg0sGorxKkqlSU-CcgpKgqN4jQyaNplKXZp8MAXhJoRR6QI5SWgCAYkYekoHQWjAt9ZDczELTu_hRrOi7e8OiCT1G5_umC6mYY_-OGIoa43Lz0ITChaJb9Y13bdG6Pl_wmBzUrk14sjtHZHZ3-zx5oNOn-8fJ9ZR6YVRPnajA1UxxaXw15swziQhQYQ1Ku3rOpCqRV1AzZJUqvfZCe4Sxd0qbmkkxIhfb3lXsXteYertskse2dQG7dbLcaAUGuOAZPf-DLrp1DHm7DSWkMpJlim8pH7uUItZ2FZtllmEZ2C_DdmvYZsN2Y9jqHDrbVa_nS6x-It9KMyC2QMpf4QXj7-x_aj8BEAqFxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765345741</pqid></control><display><type>article</type><title>Unitary p-wave interactions between fermions in an optical lattice</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Venu, Vijin ; Xu, Peihang ; Mamaev, Mikhail ; Corapi, Frank ; Bilitewski, Thomas ; D’Incao, Jose P. ; Fujiwara, Cora J. ; Rey, Ana Maria ; Thywissen, Joseph H.</creator><creatorcontrib>Venu, Vijin ; Xu, Peihang ; Mamaev, Mikhail ; Corapi, Frank ; Bilitewski, Thomas ; D’Incao, Jose P. ; Fujiwara, Cora J. ; Rey, Ana Maria ; Thywissen, Joseph H.</creatorcontrib><description>Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to unconventional superconductors and superfluids 1 – 3 . The realization of these states in controllable quantum systems, such as ultracold gases, could enable new types of quantum simulations 4 – 8 , topological quantum gates 9 – 11 and exotic few-body states 12 – 15 . However, p -wave and other antisymmetric interactions are weak in naturally occurring systems 16 , 17 , and their enhancement via Feshbach resonances in ultracold systems has been limited by three-body loss 18 – 24 . Here we create isolated pairs of spin-polarized fermionic atoms in a multiorbital three-dimensional optical lattice. We spectroscopically measure elastic p -wave interaction energies of strongly interacting pairs of atoms near a magnetic Feshbach resonance. The interaction strengths are widely tunable by the magnetic field and confinement strength, and yet collapse onto a universal curve when rescaled by the harmonic energy and length scales of a single lattice site. The absence of three-body processes enables the observation of elastic unitary p -wave interactions, as well as coherent oscillations between free-atom and interacting-pair states. All observations are compared both to an exact solution using a p -wave pseudopotential and to numerical solutions using an ab initio interaction potential. The understanding and control of on-site p -wave interactions provides a necessary component for the assembly of multiorbital lattice models 25 , 26 and a starting point for investigations of how to protect such systems from three-body recombination in the presence of tunnelling, for instance using Pauli blocking and lattice engineering 27 , 28 . The authors measure elastic p -wave interaction energies in pairs of fermionic atoms occupying the lowest two orbitals of an optical lattice; isolation of individual pairs of atoms protects against three-body recombination, enabling a theoretical maximum of interaction energy to be achieved.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05405-6</identifier><identifier>PMID: 36631646</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/999 ; 639/766/36/1125 ; Dimers ; Energy ; Fermions ; Humanities and Social Sciences ; Magnetic fields ; multidisciplinary ; Optical lattices ; P waves ; Radio frequency ; Recombination ; Science ; Science (multidisciplinary) ; Symmetry ; Wave interaction</subject><ispartof>Nature (London), 2023-01, Vol.613 (7943), p.262-267</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Jan 12, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-a3d0af15247cd921c14ee00def056afb1458e2d0f1e1d58c6c36ce09ca567f143</citedby><cites>FETCH-LOGICAL-c375t-a3d0af15247cd921c14ee00def056afb1458e2d0f1e1d58c6c36ce09ca567f143</cites><orcidid>0000-0001-7889-9544 ; 0000-0001-7176-9413 ; 0000-0002-7007-8204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36631646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venu, Vijin</creatorcontrib><creatorcontrib>Xu, Peihang</creatorcontrib><creatorcontrib>Mamaev, Mikhail</creatorcontrib><creatorcontrib>Corapi, Frank</creatorcontrib><creatorcontrib>Bilitewski, Thomas</creatorcontrib><creatorcontrib>D’Incao, Jose P.</creatorcontrib><creatorcontrib>Fujiwara, Cora J.</creatorcontrib><creatorcontrib>Rey, Ana Maria</creatorcontrib><creatorcontrib>Thywissen, Joseph H.</creatorcontrib><title>Unitary p-wave interactions between fermions in an optical lattice</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to unconventional superconductors and superfluids 1 – 3 . The realization of these states in controllable quantum systems, such as ultracold gases, could enable new types of quantum simulations 4 – 8 , topological quantum gates 9 – 11 and exotic few-body states 12 – 15 . However, p -wave and other antisymmetric interactions are weak in naturally occurring systems 16 , 17 , and their enhancement via Feshbach resonances in ultracold systems has been limited by three-body loss 18 – 24 . Here we create isolated pairs of spin-polarized fermionic atoms in a multiorbital three-dimensional optical lattice. We spectroscopically measure elastic p -wave interaction energies of strongly interacting pairs of atoms near a magnetic Feshbach resonance. The interaction strengths are widely tunable by the magnetic field and confinement strength, and yet collapse onto a universal curve when rescaled by the harmonic energy and length scales of a single lattice site. The absence of three-body processes enables the observation of elastic unitary p -wave interactions, as well as coherent oscillations between free-atom and interacting-pair states. All observations are compared both to an exact solution using a p -wave pseudopotential and to numerical solutions using an ab initio interaction potential. The understanding and control of on-site p -wave interactions provides a necessary component for the assembly of multiorbital lattice models 25 , 26 and a starting point for investigations of how to protect such systems from three-body recombination in the presence of tunnelling, for instance using Pauli blocking and lattice engineering 27 , 28 . The authors measure elastic p -wave interaction energies in pairs of fermionic atoms occupying the lowest two orbitals of an optical lattice; isolation of individual pairs of atoms protects against three-body recombination, enabling a theoretical maximum of interaction energy to be achieved.</description><subject>639/766/119/999</subject><subject>639/766/36/1125</subject><subject>Dimers</subject><subject>Energy</subject><subject>Fermions</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Optical lattices</subject><subject>P waves</subject><subject>Radio frequency</subject><subject>Recombination</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Symmetry</subject><subject>Wave interaction</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMotlb_gAsZcOMm-vI9XWrxCwpu7DqkmTcyZZqpyVTx3xvbquDCVUJy7n2PQ8gpg0sGorxKkqlSU-CcgpKgqN4jQyaNplKXZp8MAXhJoRR6QI5SWgCAYkYekoHQWjAt9ZDczELTu_hRrOi7e8OiCT1G5_umC6mYY_-OGIoa43Lz0ITChaJb9Y13bdG6Pl_wmBzUrk14sjtHZHZ3-zx5oNOn-8fJ9ZR6YVRPnajA1UxxaXw15swziQhQYQ1Ku3rOpCqRV1AzZJUqvfZCe4Sxd0qbmkkxIhfb3lXsXteYertskse2dQG7dbLcaAUGuOAZPf-DLrp1DHm7DSWkMpJlim8pH7uUItZ2FZtllmEZ2C_DdmvYZsN2Y9jqHDrbVa_nS6x-It9KMyC2QMpf4QXj7-x_aj8BEAqFxQ</recordid><startdate>20230112</startdate><enddate>20230112</enddate><creator>Venu, Vijin</creator><creator>Xu, Peihang</creator><creator>Mamaev, Mikhail</creator><creator>Corapi, Frank</creator><creator>Bilitewski, Thomas</creator><creator>D’Incao, Jose P.</creator><creator>Fujiwara, Cora J.</creator><creator>Rey, Ana Maria</creator><creator>Thywissen, Joseph H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7889-9544</orcidid><orcidid>https://orcid.org/0000-0001-7176-9413</orcidid><orcidid>https://orcid.org/0000-0002-7007-8204</orcidid></search><sort><creationdate>20230112</creationdate><title>Unitary p-wave interactions between fermions in an optical lattice</title><author>Venu, Vijin ; Xu, Peihang ; Mamaev, Mikhail ; Corapi, Frank ; Bilitewski, Thomas ; D’Incao, Jose P. ; Fujiwara, Cora J. ; Rey, Ana Maria ; Thywissen, Joseph H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-a3d0af15247cd921c14ee00def056afb1458e2d0f1e1d58c6c36ce09ca567f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/766/119/999</topic><topic>639/766/36/1125</topic><topic>Dimers</topic><topic>Energy</topic><topic>Fermions</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Optical lattices</topic><topic>P waves</topic><topic>Radio frequency</topic><topic>Recombination</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Symmetry</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venu, Vijin</creatorcontrib><creatorcontrib>Xu, Peihang</creatorcontrib><creatorcontrib>Mamaev, Mikhail</creatorcontrib><creatorcontrib>Corapi, Frank</creatorcontrib><creatorcontrib>Bilitewski, Thomas</creatorcontrib><creatorcontrib>D’Incao, Jose P.</creatorcontrib><creatorcontrib>Fujiwara, Cora J.</creatorcontrib><creatorcontrib>Rey, Ana Maria</creatorcontrib><creatorcontrib>Thywissen, Joseph H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Proquest Health and Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venu, Vijin</au><au>Xu, Peihang</au><au>Mamaev, Mikhail</au><au>Corapi, Frank</au><au>Bilitewski, Thomas</au><au>D’Incao, Jose P.</au><au>Fujiwara, Cora J.</au><au>Rey, Ana Maria</au><au>Thywissen, Joseph H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unitary p-wave interactions between fermions in an optical lattice</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-01-12</date><risdate>2023</risdate><volume>613</volume><issue>7943</issue><spage>262</spage><epage>267</epage><pages>262-267</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to unconventional superconductors and superfluids 1 – 3 . The realization of these states in controllable quantum systems, such as ultracold gases, could enable new types of quantum simulations 4 – 8 , topological quantum gates 9 – 11 and exotic few-body states 12 – 15 . However, p -wave and other antisymmetric interactions are weak in naturally occurring systems 16 , 17 , and their enhancement via Feshbach resonances in ultracold systems has been limited by three-body loss 18 – 24 . Here we create isolated pairs of spin-polarized fermionic atoms in a multiorbital three-dimensional optical lattice. We spectroscopically measure elastic p -wave interaction energies of strongly interacting pairs of atoms near a magnetic Feshbach resonance. The interaction strengths are widely tunable by the magnetic field and confinement strength, and yet collapse onto a universal curve when rescaled by the harmonic energy and length scales of a single lattice site. The absence of three-body processes enables the observation of elastic unitary p -wave interactions, as well as coherent oscillations between free-atom and interacting-pair states. All observations are compared both to an exact solution using a p -wave pseudopotential and to numerical solutions using an ab initio interaction potential. The understanding and control of on-site p -wave interactions provides a necessary component for the assembly of multiorbital lattice models 25 , 26 and a starting point for investigations of how to protect such systems from three-body recombination in the presence of tunnelling, for instance using Pauli blocking and lattice engineering 27 , 28 . The authors measure elastic p -wave interaction energies in pairs of fermionic atoms occupying the lowest two orbitals of an optical lattice; isolation of individual pairs of atoms protects against three-body recombination, enabling a theoretical maximum of interaction energy to be achieved.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36631646</pmid><doi>10.1038/s41586-022-05405-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7889-9544</orcidid><orcidid>https://orcid.org/0000-0001-7176-9413</orcidid><orcidid>https://orcid.org/0000-0002-7007-8204</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-01, Vol.613 (7943), p.262-267
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2765070232
source Springer Nature - Connect here FIRST to enable access
subjects 639/766/119/999
639/766/36/1125
Dimers
Energy
Fermions
Humanities and Social Sciences
Magnetic fields
multidisciplinary
Optical lattices
P waves
Radio frequency
Recombination
Science
Science (multidisciplinary)
Symmetry
Wave interaction
title Unitary p-wave interactions between fermions in an optical lattice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unitary%20p-wave%20interactions%20between%20fermions%20in%20an%20optical%20lattice&rft.jtitle=Nature%20(London)&rft.au=Venu,%20Vijin&rft.date=2023-01-12&rft.volume=613&rft.issue=7943&rft.spage=262&rft.epage=267&rft.pages=262-267&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05405-6&rft_dat=%3Cproquest_cross%3E2765345741%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-a3d0af15247cd921c14ee00def056afb1458e2d0f1e1d58c6c36ce09ca567f143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2765345741&rft_id=info:pmid/36631646&rfr_iscdi=true