Loading…
A practical use of cellular neural networks: the stereo-vision problem as an optimisation
A variational way of deriving the relevant parameters of a cellular neural network (CNN) is introduced. The approach exploits the CNN spontaneous internal-energy decrease and is applicable when a given problem can be expressed in terms of an optimisation task. The presented approach is fully mathema...
Saved in:
Published in: | Machine vision and applications 2000-02, Vol.11 (5), p.242-251 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c266t-1ac91635d4b29313dbe7e990ed6f824bc0217cb8bcd7416625d82bac75def76e3 |
---|---|
cites | |
container_end_page | 251 |
container_issue | 5 |
container_start_page | 242 |
container_title | Machine vision and applications |
container_volume | 11 |
creator | Taraglio, Sergio Zanela, Andrea |
description | A variational way of deriving the relevant parameters of a cellular neural network (CNN) is introduced. The approach exploits the CNN spontaneous internal-energy decrease and is applicable when a given problem can be expressed in terms of an optimisation task. The presented approach is fully mathematical as compared with the typical heuristic search for the correct parameters in the literature on CNNs. This method is practically employed in recovering information on the three-dimensional structure of the environment, through the stereo vision problem. A CNN able to find the conjugate points in a stereogram is fully derived in the proposed framework. Results of computer simulations on several test cases are provided. |
doi_str_mv | 10.1007/s001380050107 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27656441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27656441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-1ac91635d4b29313dbe7e990ed6f824bc0217cb8bcd7416625d82bac75def76e3</originalsourceid><addsrcrecordid>eNpVULtOxDAQtBBIHAclvSu6wPoRO6Y7nXhJJ9FAQRXZzkYEcvFhOyD-HqOjoZrVzOxqdgg5Z3DJAPRVAmCiAaiBgT4gCyYFr5hW5pAswJS5AcOPyUlKbwAgtZYL8rKiu2h9Hrwd6ZyQhp56HMd5tJFOOMdCT5i_QnxP1zS_Ik0ZI4bqc0hDmMpycCNuqU3UTjTs8rAdks1FOiVHvR0Tnv3hkjzf3jyt76vN493DerWpPFcqV8x6w5SoO-m4EUx0DjUaA9ipvuHSeeBMe9c432nJlOJ113Bnva477LVCsSQX-7slyseMKbclwe8LdsIwp5ZrVSspWTFWe6OPIaWIfbuLw9bG75ZB-1tg-69A8QMmv2QC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27656441</pqid></control><display><type>article</type><title>A practical use of cellular neural networks: the stereo-vision problem as an optimisation</title><source>Springer Link</source><creator>Taraglio, Sergio ; Zanela, Andrea</creator><creatorcontrib>Taraglio, Sergio ; Zanela, Andrea</creatorcontrib><description>A variational way of deriving the relevant parameters of a cellular neural network (CNN) is introduced. The approach exploits the CNN spontaneous internal-energy decrease and is applicable when a given problem can be expressed in terms of an optimisation task. The presented approach is fully mathematical as compared with the typical heuristic search for the correct parameters in the literature on CNNs. This method is practically employed in recovering information on the three-dimensional structure of the environment, through the stereo vision problem. A CNN able to find the conjugate points in a stereogram is fully derived in the proposed framework. Results of computer simulations on several test cases are provided.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s001380050107</identifier><language>eng</language><ispartof>Machine vision and applications, 2000-02, Vol.11 (5), p.242-251</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-1ac91635d4b29313dbe7e990ed6f824bc0217cb8bcd7416625d82bac75def76e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Taraglio, Sergio</creatorcontrib><creatorcontrib>Zanela, Andrea</creatorcontrib><title>A practical use of cellular neural networks: the stereo-vision problem as an optimisation</title><title>Machine vision and applications</title><description>A variational way of deriving the relevant parameters of a cellular neural network (CNN) is introduced. The approach exploits the CNN spontaneous internal-energy decrease and is applicable when a given problem can be expressed in terms of an optimisation task. The presented approach is fully mathematical as compared with the typical heuristic search for the correct parameters in the literature on CNNs. This method is practically employed in recovering information on the three-dimensional structure of the environment, through the stereo vision problem. A CNN able to find the conjugate points in a stereogram is fully derived in the proposed framework. Results of computer simulations on several test cases are provided.</description><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpVULtOxDAQtBBIHAclvSu6wPoRO6Y7nXhJJ9FAQRXZzkYEcvFhOyD-HqOjoZrVzOxqdgg5Z3DJAPRVAmCiAaiBgT4gCyYFr5hW5pAswJS5AcOPyUlKbwAgtZYL8rKiu2h9Hrwd6ZyQhp56HMd5tJFOOMdCT5i_QnxP1zS_Ik0ZI4bqc0hDmMpycCNuqU3UTjTs8rAdks1FOiVHvR0Tnv3hkjzf3jyt76vN493DerWpPFcqV8x6w5SoO-m4EUx0DjUaA9ipvuHSeeBMe9c432nJlOJ113Bnva477LVCsSQX-7slyseMKbclwe8LdsIwp5ZrVSspWTFWe6OPIaWIfbuLw9bG75ZB-1tg-69A8QMmv2QC</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Taraglio, Sergio</creator><creator>Zanela, Andrea</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000201</creationdate><title>A practical use of cellular neural networks: the stereo-vision problem as an optimisation</title><author>Taraglio, Sergio ; Zanela, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-1ac91635d4b29313dbe7e990ed6f824bc0217cb8bcd7416625d82bac75def76e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taraglio, Sergio</creatorcontrib><creatorcontrib>Zanela, Andrea</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taraglio, Sergio</au><au>Zanela, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A practical use of cellular neural networks: the stereo-vision problem as an optimisation</atitle><jtitle>Machine vision and applications</jtitle><date>2000-02-01</date><risdate>2000</risdate><volume>11</volume><issue>5</issue><spage>242</spage><epage>251</epage><pages>242-251</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>A variational way of deriving the relevant parameters of a cellular neural network (CNN) is introduced. The approach exploits the CNN spontaneous internal-energy decrease and is applicable when a given problem can be expressed in terms of an optimisation task. The presented approach is fully mathematical as compared with the typical heuristic search for the correct parameters in the literature on CNNs. This method is practically employed in recovering information on the three-dimensional structure of the environment, through the stereo vision problem. A CNN able to find the conjugate points in a stereogram is fully derived in the proposed framework. Results of computer simulations on several test cases are provided.</abstract><doi>10.1007/s001380050107</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2000-02, Vol.11 (5), p.242-251 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_proquest_miscellaneous_27656441 |
source | Springer Link |
title | A practical use of cellular neural networks: the stereo-vision problem as an optimisation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20practical%20use%20of%20cellular%20neural%20networks:%20the%20stereo-vision%20problem%20as%20an%20optimisation&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Taraglio,%20Sergio&rft.date=2000-02-01&rft.volume=11&rft.issue=5&rft.spage=242&rft.epage=251&rft.pages=242-251&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s001380050107&rft_dat=%3Cproquest_cross%3E27656441%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-1ac91635d4b29313dbe7e990ed6f824bc0217cb8bcd7416625d82bac75def76e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27656441&rft_id=info:pmid/&rfr_iscdi=true |