Loading…

Toll-like receptor 9 signaling after myocardial infarction: Role of p66ShcA adaptor protein

During myocardial infarction, cellular debris is released, causing a sterile inflammation via pattern recognition receptors. These reactions amplify damage and promotes secondary heart failure. The pattern recognition receptor, Toll-like receptor 9 (TLR9) detects immunogenic fragments of endogenous...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2023-02, Vol.644, p.70-78
Main Authors: Baysa, Anton, Maghazachi, Azzam A., Sand, Kristin Larsen, Campesan, Marika, Zaglia, Tania, Mongillo, Marco, Giorgio, Marco, Di Lisa, Fabio, Gullestad, Lars, Mariero, Lars H., Vaage, Jarle, Valen, Guro, Stensløkken, Kåre-Olav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During myocardial infarction, cellular debris is released, causing a sterile inflammation via pattern recognition receptors. These reactions amplify damage and promotes secondary heart failure. The pattern recognition receptor, Toll-like receptor 9 (TLR9) detects immunogenic fragments of endogenous DNA, inducing inflammation by NFκB. The p66ShcA adaptor protein plays an important role in both ischemic myocardial damage and immune responses. We hypothesized that p66ShcA adaptor protein promotes DNA-sensing signaling via the TLR9 pathway after myocardial infarction. TLR9 protein expression increased in cardiac tissue from patients with end-stage heart failure due to ischemic heart disease. Myocardial ischemia in mice in vivo induced gene expression of key TLR9 pathway proteins (MyD88 and Unc93b1). In this model, a functional link between TLR9 and p66ShcA was revealed as; (i) ischemia-induced upregulation of TLR9 protein was abrogated in myocardium of p66ShcA knockout mice; (ii) when p66ShcA was overexpressed in NFkB reporter cells stably expressing TLR9, NFkB-activation increased during stimulation with the TLR9 agonist CpG B; (iii) in cardiac fibroblasts, p66ShcA overexpression caused TLR9 upregulation. Co-immunoprecipitation showed that ShcA proteins and TLR9 may be found in the same protein complex, which was dissipated upon TLR9 stimulation in vivo. A proximity assay confirmed the co-localization of TLR9 and ShcA proteins. The systemic immune response after myocardial ischemia was dampened in p66ShcA knockout mice as interleukin-4, -17 and −22 expression in mononuclear cells isolated from spleens was reduced. In conclusion, p66ShcA adaptor may be an interaction partner and a regulator of the TLR9 pathway post-infarction. •We show a functional link between TLR 9 and p66ShcA in mice.•TLR9 is upregulated in patients with ischemic heart disease.•TLR9 is upregulated in p66ShcA knockout mice.•In cardiac fibroblasts p66ShcA overexpression caused TLR9 upregulation.•Co-immunoprecipitation and proximity assay confirmed the co-localization of TLR9 and ShcA proteins.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2022.12.085