Loading…

Targeting the epigenome of cancer stem cells in pediatric nervous system tumors

Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation of cells with highly tumorigenic and stem cell-like featur...

Full description

Saved in:
Bibliographic Details
Published in:Molecular and cellular biochemistry 2023-10, Vol.478 (10), p.2241-2255
Main Authors: Freire, Natália Hogetop, Jaeger, Mariane da Cunha, de Farias, Caroline Brunetto, Nör, Carolina, Souza, Barbara Kunzler, Gregianin, Lauro, Brunetto, André Tesainer, Roesler, Rafael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-3ad9f2520fb06ad8a42654301f72f0d8d62642a32c38ed8da0dc00878287975c3
cites cdi_FETCH-LOGICAL-c442t-3ad9f2520fb06ad8a42654301f72f0d8d62642a32c38ed8da0dc00878287975c3
container_end_page 2255
container_issue 10
container_start_page 2241
container_title Molecular and cellular biochemistry
container_volume 478
creator Freire, Natália Hogetop
Jaeger, Mariane da Cunha
de Farias, Caroline Brunetto
Nör, Carolina
Souza, Barbara Kunzler
Gregianin, Lauro
Brunetto, André Tesainer
Roesler, Rafael
description Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation of cells with highly tumorigenic and stem cell-like features. These cancer stem cells play a role in initiation, progression, and resistance to treatment of pediatric nervous system tumors. Histone modification, DNA methylation, chromatin remodeling, and microRNA regulation display a range of regulatory activities involved in cancer origin and progression, and cellular identity, especially those associated with stem cell features, such as self-renewal and pluripotent differentiation potential. Here, we review the contribution of different epigenetic mechanisms in pediatric nervous system tumor cancer stem cells. The choice between a differentiated and undifferentiated state can be modulated by alterations in the epigenome through the regulation of stemness genes such as CD133, SOX2, and BMI1 and the activation neuronal of differentiation markers, RBFOX3, GFAP, and S100B. Additionally, we highlighted the stage of development of epigenetic drugs and the clinical benefits and efficacy of epigenetic modulators in pediatric nervous system tumors.
doi_str_mv 10.1007/s11010-022-04655-2
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2765775383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A766648107</galeid><sourcerecordid>A766648107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-3ad9f2520fb06ad8a42654301f72f0d8d62642a32c38ed8da0dc00878287975c3</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxYMo9ln9B1xIwI2bqTffectS_IJCN3Ud0szNmPImeSYzQv978_qqRRHJ4pLc3zmccAh5zeCMAZj3jTFgMADnA0it1MCfkA1TRgxyy7ZPyQYEwGCZMSfkRWu30Glg7Dk5EVoLo5nakKtrXydcUp7o8g0p7tOEucxIS6TB54CVtgVnGnC3azRluscx-aWmQDPWH2VttN3dE8s6l9pekmfR7xq-epin5OvHD9cXn4fLq09fLs4vhyAlXwbhx23kikO8Ae1H6yXXSgpg0fAIox0115J7wYOw2K8exgBgjeXWbI0K4pS8O_rua_m-YlvcnNohpM_YQzlutDJGCSs6-vYv9LasNfd0jlttpbVcykdq8jt0KceyVB8Opu7caK2lZWA6dfYPqp8R5xRKxpj6-x8CfhSEWlqrGN2-ptnXO8fAHVp0xxZdb9Hdt-h4F715SLzezDj-lvyqrQPiCLS-yhPWxy_9x_YnY_GktA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868488244</pqid></control><display><type>article</type><title>Targeting the epigenome of cancer stem cells in pediatric nervous system tumors</title><source>Springer Link</source><creator>Freire, Natália Hogetop ; Jaeger, Mariane da Cunha ; de Farias, Caroline Brunetto ; Nör, Carolina ; Souza, Barbara Kunzler ; Gregianin, Lauro ; Brunetto, André Tesainer ; Roesler, Rafael</creator><creatorcontrib>Freire, Natália Hogetop ; Jaeger, Mariane da Cunha ; de Farias, Caroline Brunetto ; Nör, Carolina ; Souza, Barbara Kunzler ; Gregianin, Lauro ; Brunetto, André Tesainer ; Roesler, Rafael</creatorcontrib><description>Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation of cells with highly tumorigenic and stem cell-like features. These cancer stem cells play a role in initiation, progression, and resistance to treatment of pediatric nervous system tumors. Histone modification, DNA methylation, chromatin remodeling, and microRNA regulation display a range of regulatory activities involved in cancer origin and progression, and cellular identity, especially those associated with stem cell features, such as self-renewal and pluripotent differentiation potential. Here, we review the contribution of different epigenetic mechanisms in pediatric nervous system tumor cancer stem cells. The choice between a differentiated and undifferentiated state can be modulated by alterations in the epigenome through the regulation of stemness genes such as CD133, SOX2, and BMI1 and the activation neuronal of differentiation markers, RBFOX3, GFAP, and S100B. Additionally, we highlighted the stage of development of epigenetic drugs and the clinical benefits and efficacy of epigenetic modulators in pediatric nervous system tumors.</description><identifier>ISSN: 0300-8177</identifier><identifier>EISSN: 1573-4919</identifier><identifier>DOI: 10.1007/s11010-022-04655-2</identifier><identifier>PMID: 36637615</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amino acids ; Biochemistry ; Biomedical and Life Sciences ; Brain cancer ; Brain tumors ; Cancer ; Cancer Research ; Cardiology ; Cell differentiation ; Cell self-renewal ; Chromatin ; Chromatin remodeling ; Development and progression ; Developmental stages ; Differentiation ; DNA methylation ; Drug development ; Epigenetic inheritance ; Epigenetics ; Gene regulation ; Genes ; Glial fibrillary acidic protein ; Glioma ; Gliomas ; Histones ; Life Sciences ; Medical Biochemistry ; Medulloblastoma ; Methylation ; MicroRNA ; miRNA ; Modulators ; Nervous system ; Nervous system tumors ; Neural stem cells ; Neuroblastoma ; Neuromodulation ; Neurophysiology ; Pediatrics ; Pluripotency ; Progenitor cells ; Ribonucleic acid ; RNA ; S100b protein ; Stem cell research ; Stem cells ; Tumors ; Vorinostat</subject><ispartof>Molecular and cellular biochemistry, 2023-10, Vol.478 (10), p.2241-2255</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-3ad9f2520fb06ad8a42654301f72f0d8d62642a32c38ed8da0dc00878287975c3</citedby><cites>FETCH-LOGICAL-c442t-3ad9f2520fb06ad8a42654301f72f0d8d62642a32c38ed8da0dc00878287975c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36637615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freire, Natália Hogetop</creatorcontrib><creatorcontrib>Jaeger, Mariane da Cunha</creatorcontrib><creatorcontrib>de Farias, Caroline Brunetto</creatorcontrib><creatorcontrib>Nör, Carolina</creatorcontrib><creatorcontrib>Souza, Barbara Kunzler</creatorcontrib><creatorcontrib>Gregianin, Lauro</creatorcontrib><creatorcontrib>Brunetto, André Tesainer</creatorcontrib><creatorcontrib>Roesler, Rafael</creatorcontrib><title>Targeting the epigenome of cancer stem cells in pediatric nervous system tumors</title><title>Molecular and cellular biochemistry</title><addtitle>Mol Cell Biochem</addtitle><addtitle>Mol Cell Biochem</addtitle><description>Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation of cells with highly tumorigenic and stem cell-like features. These cancer stem cells play a role in initiation, progression, and resistance to treatment of pediatric nervous system tumors. Histone modification, DNA methylation, chromatin remodeling, and microRNA regulation display a range of regulatory activities involved in cancer origin and progression, and cellular identity, especially those associated with stem cell features, such as self-renewal and pluripotent differentiation potential. Here, we review the contribution of different epigenetic mechanisms in pediatric nervous system tumor cancer stem cells. The choice between a differentiated and undifferentiated state can be modulated by alterations in the epigenome through the regulation of stemness genes such as CD133, SOX2, and BMI1 and the activation neuronal of differentiation markers, RBFOX3, GFAP, and S100B. Additionally, we highlighted the stage of development of epigenetic drugs and the clinical benefits and efficacy of epigenetic modulators in pediatric nervous system tumors.</description><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Brain cancer</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cardiology</subject><subject>Cell differentiation</subject><subject>Cell self-renewal</subject><subject>Chromatin</subject><subject>Chromatin remodeling</subject><subject>Development and progression</subject><subject>Developmental stages</subject><subject>Differentiation</subject><subject>DNA methylation</subject><subject>Drug development</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Glial fibrillary acidic protein</subject><subject>Glioma</subject><subject>Gliomas</subject><subject>Histones</subject><subject>Life Sciences</subject><subject>Medical Biochemistry</subject><subject>Medulloblastoma</subject><subject>Methylation</subject><subject>MicroRNA</subject><subject>miRNA</subject><subject>Modulators</subject><subject>Nervous system</subject><subject>Nervous system tumors</subject><subject>Neural stem cells</subject><subject>Neuroblastoma</subject><subject>Neuromodulation</subject><subject>Neurophysiology</subject><subject>Pediatrics</subject><subject>Pluripotency</subject><subject>Progenitor cells</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>S100b protein</subject><subject>Stem cell research</subject><subject>Stem cells</subject><subject>Tumors</subject><subject>Vorinostat</subject><issn>0300-8177</issn><issn>1573-4919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1rFTEUxYMo9ln9B1xIwI2bqTffectS_IJCN3Ud0szNmPImeSYzQv978_qqRRHJ4pLc3zmccAh5zeCMAZj3jTFgMADnA0it1MCfkA1TRgxyy7ZPyQYEwGCZMSfkRWu30Glg7Dk5EVoLo5nakKtrXydcUp7o8g0p7tOEucxIS6TB54CVtgVnGnC3azRluscx-aWmQDPWH2VttN3dE8s6l9pekmfR7xq-epin5OvHD9cXn4fLq09fLs4vhyAlXwbhx23kikO8Ae1H6yXXSgpg0fAIox0115J7wYOw2K8exgBgjeXWbI0K4pS8O_rua_m-YlvcnNohpM_YQzlutDJGCSs6-vYv9LasNfd0jlttpbVcykdq8jt0KceyVB8Opu7caK2lZWA6dfYPqp8R5xRKxpj6-x8CfhSEWlqrGN2-ptnXO8fAHVp0xxZdb9Hdt-h4F715SLzezDj-lvyqrQPiCLS-yhPWxy_9x_YnY_GktA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Freire, Natália Hogetop</creator><creator>Jaeger, Mariane da Cunha</creator><creator>de Farias, Caroline Brunetto</creator><creator>Nör, Carolina</creator><creator>Souza, Barbara Kunzler</creator><creator>Gregianin, Lauro</creator><creator>Brunetto, André Tesainer</creator><creator>Roesler, Rafael</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20231001</creationdate><title>Targeting the epigenome of cancer stem cells in pediatric nervous system tumors</title><author>Freire, Natália Hogetop ; Jaeger, Mariane da Cunha ; de Farias, Caroline Brunetto ; Nör, Carolina ; Souza, Barbara Kunzler ; Gregianin, Lauro ; Brunetto, André Tesainer ; Roesler, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-3ad9f2520fb06ad8a42654301f72f0d8d62642a32c38ed8da0dc00878287975c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Brain cancer</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cardiology</topic><topic>Cell differentiation</topic><topic>Cell self-renewal</topic><topic>Chromatin</topic><topic>Chromatin remodeling</topic><topic>Development and progression</topic><topic>Developmental stages</topic><topic>Differentiation</topic><topic>DNA methylation</topic><topic>Drug development</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Glial fibrillary acidic protein</topic><topic>Glioma</topic><topic>Gliomas</topic><topic>Histones</topic><topic>Life Sciences</topic><topic>Medical Biochemistry</topic><topic>Medulloblastoma</topic><topic>Methylation</topic><topic>MicroRNA</topic><topic>miRNA</topic><topic>Modulators</topic><topic>Nervous system</topic><topic>Nervous system tumors</topic><topic>Neural stem cells</topic><topic>Neuroblastoma</topic><topic>Neuromodulation</topic><topic>Neurophysiology</topic><topic>Pediatrics</topic><topic>Pluripotency</topic><topic>Progenitor cells</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>S100b protein</topic><topic>Stem cell research</topic><topic>Stem cells</topic><topic>Tumors</topic><topic>Vorinostat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freire, Natália Hogetop</creatorcontrib><creatorcontrib>Jaeger, Mariane da Cunha</creatorcontrib><creatorcontrib>de Farias, Caroline Brunetto</creatorcontrib><creatorcontrib>Nör, Carolina</creatorcontrib><creatorcontrib>Souza, Barbara Kunzler</creatorcontrib><creatorcontrib>Gregianin, Lauro</creatorcontrib><creatorcontrib>Brunetto, André Tesainer</creatorcontrib><creatorcontrib>Roesler, Rafael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>PHMC-Proquest健康医学期刊库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freire, Natália Hogetop</au><au>Jaeger, Mariane da Cunha</au><au>de Farias, Caroline Brunetto</au><au>Nör, Carolina</au><au>Souza, Barbara Kunzler</au><au>Gregianin, Lauro</au><au>Brunetto, André Tesainer</au><au>Roesler, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting the epigenome of cancer stem cells in pediatric nervous system tumors</atitle><jtitle>Molecular and cellular biochemistry</jtitle><stitle>Mol Cell Biochem</stitle><addtitle>Mol Cell Biochem</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>478</volume><issue>10</issue><spage>2241</spage><epage>2255</epage><pages>2241-2255</pages><issn>0300-8177</issn><eissn>1573-4919</eissn><abstract>Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation of cells with highly tumorigenic and stem cell-like features. These cancer stem cells play a role in initiation, progression, and resistance to treatment of pediatric nervous system tumors. Histone modification, DNA methylation, chromatin remodeling, and microRNA regulation display a range of regulatory activities involved in cancer origin and progression, and cellular identity, especially those associated with stem cell features, such as self-renewal and pluripotent differentiation potential. Here, we review the contribution of different epigenetic mechanisms in pediatric nervous system tumor cancer stem cells. The choice between a differentiated and undifferentiated state can be modulated by alterations in the epigenome through the regulation of stemness genes such as CD133, SOX2, and BMI1 and the activation neuronal of differentiation markers, RBFOX3, GFAP, and S100B. Additionally, we highlighted the stage of development of epigenetic drugs and the clinical benefits and efficacy of epigenetic modulators in pediatric nervous system tumors.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36637615</pmid><doi>10.1007/s11010-022-04655-2</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0300-8177
ispartof Molecular and cellular biochemistry, 2023-10, Vol.478 (10), p.2241-2255
issn 0300-8177
1573-4919
language eng
recordid cdi_proquest_miscellaneous_2765775383
source Springer Link
subjects Amino acids
Biochemistry
Biomedical and Life Sciences
Brain cancer
Brain tumors
Cancer
Cancer Research
Cardiology
Cell differentiation
Cell self-renewal
Chromatin
Chromatin remodeling
Development and progression
Developmental stages
Differentiation
DNA methylation
Drug development
Epigenetic inheritance
Epigenetics
Gene regulation
Genes
Glial fibrillary acidic protein
Glioma
Gliomas
Histones
Life Sciences
Medical Biochemistry
Medulloblastoma
Methylation
MicroRNA
miRNA
Modulators
Nervous system
Nervous system tumors
Neural stem cells
Neuroblastoma
Neuromodulation
Neurophysiology
Pediatrics
Pluripotency
Progenitor cells
Ribonucleic acid
RNA
S100b protein
Stem cell research
Stem cells
Tumors
Vorinostat
title Targeting the epigenome of cancer stem cells in pediatric nervous system tumors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20the%20epigenome%20of%20cancer%20stem%20cells%20in%20pediatric%20nervous%20system%20tumors&rft.jtitle=Molecular%20and%20cellular%20biochemistry&rft.au=Freire,%20Nat%C3%A1lia%20Hogetop&rft.date=2023-10-01&rft.volume=478&rft.issue=10&rft.spage=2241&rft.epage=2255&rft.pages=2241-2255&rft.issn=0300-8177&rft.eissn=1573-4919&rft_id=info:doi/10.1007/s11010-022-04655-2&rft_dat=%3Cgale_proqu%3EA766648107%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-3ad9f2520fb06ad8a42654301f72f0d8d62642a32c38ed8da0dc00878287975c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2868488244&rft_id=info:pmid/36637615&rft_galeid=A766648107&rfr_iscdi=true