Loading…

Properties of Liquid Crystal Epoxy Thermosets Cured in a Magnetic Field

Two liquid crystal diepoxides [1,4-phenylene bis(4-(2,3-epoxypropoxy)benzoate) (A) and 4,4‘-diglycidyloxydiphenyl (B)] were cured with a diamine [4,4‘-diaminobiphenyl (C)] in the nematic phase to obtain liquid crystalline thermoset (LCT) materials. The systems were studied using different curing con...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2000-08, Vol.33 (17), p.6249-6254
Main Authors: Tan, Chibing, Sun, Hong, Fung, Bing M, Grady, Brian P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a355t-311b912b05226bf92ec3908e4e54009e9ad83db309d76a5dae6a38b101f6cade3
cites cdi_FETCH-LOGICAL-a355t-311b912b05226bf92ec3908e4e54009e9ad83db309d76a5dae6a38b101f6cade3
container_end_page 6254
container_issue 17
container_start_page 6249
container_title Macromolecules
container_volume 33
creator Tan, Chibing
Sun, Hong
Fung, Bing M
Grady, Brian P
description Two liquid crystal diepoxides [1,4-phenylene bis(4-(2,3-epoxypropoxy)benzoate) (A) and 4,4‘-diglycidyloxydiphenyl (B)] were cured with a diamine [4,4‘-diaminobiphenyl (C)] in the nematic phase to obtain liquid crystalline thermoset (LCT) materials. The systems were studied using different curing conditions and different ratios of the compounds. The mechanical properties were investigated by stress/strain experiments to determine ultimate properties (break strength and elongation at break) and dynamic mechanical thermal analysis (DMTA) to determine small strain properties as a function of temperature. An A/C mole ratio of 4/1 gave materials with the best combination of high strength and percent elongation. The addition of a small amount of diepoxide B to the system (with a mole ratio of A/B = 4/1) improves the mechanical properties. Dynamic mechanical thermal analysis shows that increasing diamine content or curing time increases the cross-linking density. Macroscopic orientation of the LCTs was achieved by curing the mixtures in the presence of a magnetic field. The samples show that the tensile modulus, break strength, elongation at break, and the storage modulus below the glass transition all increase by a factor of about 2.
doi_str_mv 10.1021/ma991641l
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27668442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27668442</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-311b912b05226bf92ec3908e4e54009e9ad83db309d76a5dae6a38b101f6cade3</originalsourceid><addsrcrecordid>eNpt0E1Lw0AQBuBFFKwfB__BHlTwEN2PbJI9avGTqgUripdlkkx0NU3S3QTaf28kUi-e5jDPvAMvIQecnXIm-NkctOZRyMsNMuJKsEAlUm2SEWMiDLTQ8TbZ8f6TMc5VKEfkeurqBl1r0dO6oBO76GxOx27lWyjpZVMvV3T2gW5ee2w9HXcOc2orCvQe3itsbUavLJb5HtkqoPS4_zt3yfPV5Wx8E0wer2_H55MApFJtIDlPNRcpU0JEaaEFZlKzBENUIWMaNeSJzFPJdB5HoHLACGSScsaLKIMc5S45HnIbVy869K2ZW59hWUKFdeeNiKMoCUPRw5MBZq723mFhGmfn4FaGM_NTlVlX1dvD31DwGZSFgyqz_u8gjAXjumfBwKxvcbleg_syUSxjZWbTJ_MqH97u2As3F70_Gjxk3nzWnav6Zv55_w3aioLS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27668442</pqid></control><display><type>article</type><title>Properties of Liquid Crystal Epoxy Thermosets Cured in a Magnetic Field</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tan, Chibing ; Sun, Hong ; Fung, Bing M ; Grady, Brian P</creator><creatorcontrib>Tan, Chibing ; Sun, Hong ; Fung, Bing M ; Grady, Brian P</creatorcontrib><description>Two liquid crystal diepoxides [1,4-phenylene bis(4-(2,3-epoxypropoxy)benzoate) (A) and 4,4‘-diglycidyloxydiphenyl (B)] were cured with a diamine [4,4‘-diaminobiphenyl (C)] in the nematic phase to obtain liquid crystalline thermoset (LCT) materials. The systems were studied using different curing conditions and different ratios of the compounds. The mechanical properties were investigated by stress/strain experiments to determine ultimate properties (break strength and elongation at break) and dynamic mechanical thermal analysis (DMTA) to determine small strain properties as a function of temperature. An A/C mole ratio of 4/1 gave materials with the best combination of high strength and percent elongation. The addition of a small amount of diepoxide B to the system (with a mole ratio of A/B = 4/1) improves the mechanical properties. Dynamic mechanical thermal analysis shows that increasing diamine content or curing time increases the cross-linking density. Macroscopic orientation of the LCTs was achieved by curing the mixtures in the presence of a magnetic field. The samples show that the tensile modulus, break strength, elongation at break, and the storage modulus below the glass transition all increase by a factor of about 2.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma991641l</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Rheology and viscoelasticity</subject><ispartof>Macromolecules, 2000-08, Vol.33 (17), p.6249-6254</ispartof><rights>Copyright © 2000 American Chemical Society</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-311b912b05226bf92ec3908e4e54009e9ad83db309d76a5dae6a38b101f6cade3</citedby><cites>FETCH-LOGICAL-a355t-311b912b05226bf92ec3908e4e54009e9ad83db309d76a5dae6a38b101f6cade3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1472019$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Chibing</creatorcontrib><creatorcontrib>Sun, Hong</creatorcontrib><creatorcontrib>Fung, Bing M</creatorcontrib><creatorcontrib>Grady, Brian P</creatorcontrib><title>Properties of Liquid Crystal Epoxy Thermosets Cured in a Magnetic Field</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Two liquid crystal diepoxides [1,4-phenylene bis(4-(2,3-epoxypropoxy)benzoate) (A) and 4,4‘-diglycidyloxydiphenyl (B)] were cured with a diamine [4,4‘-diaminobiphenyl (C)] in the nematic phase to obtain liquid crystalline thermoset (LCT) materials. The systems were studied using different curing conditions and different ratios of the compounds. The mechanical properties were investigated by stress/strain experiments to determine ultimate properties (break strength and elongation at break) and dynamic mechanical thermal analysis (DMTA) to determine small strain properties as a function of temperature. An A/C mole ratio of 4/1 gave materials with the best combination of high strength and percent elongation. The addition of a small amount of diepoxide B to the system (with a mole ratio of A/B = 4/1) improves the mechanical properties. Dynamic mechanical thermal analysis shows that increasing diamine content or curing time increases the cross-linking density. Macroscopic orientation of the LCTs was achieved by curing the mixtures in the presence of a magnetic field. The samples show that the tensile modulus, break strength, elongation at break, and the storage modulus below the glass transition all increase by a factor of about 2.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Rheology and viscoelasticity</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpt0E1Lw0AQBuBFFKwfB__BHlTwEN2PbJI9avGTqgUripdlkkx0NU3S3QTaf28kUi-e5jDPvAMvIQecnXIm-NkctOZRyMsNMuJKsEAlUm2SEWMiDLTQ8TbZ8f6TMc5VKEfkeurqBl1r0dO6oBO76GxOx27lWyjpZVMvV3T2gW5ee2w9HXcOc2orCvQe3itsbUavLJb5HtkqoPS4_zt3yfPV5Wx8E0wer2_H55MApFJtIDlPNRcpU0JEaaEFZlKzBENUIWMaNeSJzFPJdB5HoHLACGSScsaLKIMc5S45HnIbVy869K2ZW59hWUKFdeeNiKMoCUPRw5MBZq723mFhGmfn4FaGM_NTlVlX1dvD31DwGZSFgyqz_u8gjAXjumfBwKxvcbleg_syUSxjZWbTJ_MqH97u2As3F70_Gjxk3nzWnav6Zv55_w3aioLS</recordid><startdate>20000822</startdate><enddate>20000822</enddate><creator>Tan, Chibing</creator><creator>Sun, Hong</creator><creator>Fung, Bing M</creator><creator>Grady, Brian P</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20000822</creationdate><title>Properties of Liquid Crystal Epoxy Thermosets Cured in a Magnetic Field</title><author>Tan, Chibing ; Sun, Hong ; Fung, Bing M ; Grady, Brian P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-311b912b05226bf92ec3908e4e54009e9ad83db309d76a5dae6a38b101f6cade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Rheology and viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Chibing</creatorcontrib><creatorcontrib>Sun, Hong</creatorcontrib><creatorcontrib>Fung, Bing M</creatorcontrib><creatorcontrib>Grady, Brian P</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Chibing</au><au>Sun, Hong</au><au>Fung, Bing M</au><au>Grady, Brian P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of Liquid Crystal Epoxy Thermosets Cured in a Magnetic Field</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2000-08-22</date><risdate>2000</risdate><volume>33</volume><issue>17</issue><spage>6249</spage><epage>6254</epage><pages>6249-6254</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>Two liquid crystal diepoxides [1,4-phenylene bis(4-(2,3-epoxypropoxy)benzoate) (A) and 4,4‘-diglycidyloxydiphenyl (B)] were cured with a diamine [4,4‘-diaminobiphenyl (C)] in the nematic phase to obtain liquid crystalline thermoset (LCT) materials. The systems were studied using different curing conditions and different ratios of the compounds. The mechanical properties were investigated by stress/strain experiments to determine ultimate properties (break strength and elongation at break) and dynamic mechanical thermal analysis (DMTA) to determine small strain properties as a function of temperature. An A/C mole ratio of 4/1 gave materials with the best combination of high strength and percent elongation. The addition of a small amount of diepoxide B to the system (with a mole ratio of A/B = 4/1) improves the mechanical properties. Dynamic mechanical thermal analysis shows that increasing diamine content or curing time increases the cross-linking density. Macroscopic orientation of the LCTs was achieved by curing the mixtures in the presence of a magnetic field. The samples show that the tensile modulus, break strength, elongation at break, and the storage modulus below the glass transition all increase by a factor of about 2.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma991641l</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2000-08, Vol.33 (17), p.6249-6254
issn 0024-9297
1520-5835
language eng
recordid cdi_proquest_miscellaneous_27668442
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
Rheology and viscoelasticity
title Properties of Liquid Crystal Epoxy Thermosets Cured in a Magnetic Field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20Liquid%20Crystal%20Epoxy%20Thermosets%20Cured%20in%20a%20Magnetic%20Field&rft.jtitle=Macromolecules&rft.au=Tan,%20Chibing&rft.date=2000-08-22&rft.volume=33&rft.issue=17&rft.spage=6249&rft.epage=6254&rft.pages=6249-6254&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma991641l&rft_dat=%3Cproquest_cross%3E27668442%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a355t-311b912b05226bf92ec3908e4e54009e9ad83db309d76a5dae6a38b101f6cade3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27668442&rft_id=info:pmid/&rfr_iscdi=true