Loading…
Quartic spline method for solving fourth order obstacle boundary value problems
In this paper, we use uniform quartic polynomial splines to develop a new method, which is used for computing approximations to the solution and its first, second as well as third derivatives for a system of fourth order boundary value problems associated with obstacle, unilateral and contact proble...
Saved in:
Published in: | Journal of computational and applied mathematics 2002-06, Vol.143 (1), p.107-116 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c467t-bab0d769f06470129394a9cf9065de086b4b463dbff7a7009728c9258ecd537d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c467t-bab0d769f06470129394a9cf9065de086b4b463dbff7a7009728c9258ecd537d3 |
container_end_page | 116 |
container_issue | 1 |
container_start_page | 107 |
container_title | Journal of computational and applied mathematics |
container_volume | 143 |
creator | Al-Said, Eisa A. Noor, Muhammad Aslam |
description | In this paper, we use uniform quartic polynomial splines to develop a new method, which is used for computing approximations to the solution and its first, second as well as third derivatives for a system of fourth order boundary value problems associated with obstacle, unilateral and contact problems. It is shown that the present method is of order two and gives approximations which are better than those produced by other collocation and finite difference methods. Numerical examples are presented to illustrate the applicability of the new method. |
doi_str_mv | 10.1016/S0377-0427(01)00497-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27673461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042701004976</els_id><sourcerecordid>27673461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-bab0d769f06470129394a9cf9065de086b4b463dbff7a7009728c9258ecd537d3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouH78CUIuih6qkzabNCcR8QuERdRzSJOpG8k2a9Iu-N_bdUWPnmYOv_fezCPkiME5AyYunqGSsgBeylNgZwBcyUJskQmrpSqYlPU2mfwiu2Qv53cAEIrxCZk9DSb13tK8DL5DusB-Hh1tY6I5hpXv3sZ9SP2cxuQw0djk3tiAtIlD50z6pCsTBqTLFJuAi3xAdloTMh7-zH3yenvzcn1fPM7uHq6vHgvLheyLxjTgpFAtCC6BlapS3CjbKhBTh1CLhjdcVK5pW2kkgJJlbVU5rdG6aSVdtU9ONr5j8MeAudcLny2GYDqMQ9alFLLigo3gdAPaFHNO2Opl8ovxcM1Ar-vT3_XpdTcamP6uT4tRd_wTYLI1oU2msz7_iau1v-Ijd7nhcPx25THpbD12Fp1PaHvtov8n6Qt-vYS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27673461</pqid></control><display><type>article</type><title>Quartic spline method for solving fourth order obstacle boundary value problems</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Al-Said, Eisa A. ; Noor, Muhammad Aslam</creator><creatorcontrib>Al-Said, Eisa A. ; Noor, Muhammad Aslam</creatorcontrib><description>In this paper, we use uniform quartic polynomial splines to develop a new method, which is used for computing approximations to the solution and its first, second as well as third derivatives for a system of fourth order boundary value problems associated with obstacle, unilateral and contact problems. It is shown that the present method is of order two and gives approximations which are better than those produced by other collocation and finite difference methods. Numerical examples are presented to illustrate the applicability of the new method.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(01)00497-6</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Calculus of variations and optimal control ; Convergence ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, boundary value problems ; Quartic splines ; Sciences and techniques of general use ; System of differential equations ; Variational inequalities</subject><ispartof>Journal of computational and applied mathematics, 2002-06, Vol.143 (1), p.107-116</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-bab0d769f06470129394a9cf9065de086b4b463dbff7a7009728c9258ecd537d3</citedby><cites>FETCH-LOGICAL-c467t-bab0d769f06470129394a9cf9065de086b4b463dbff7a7009728c9258ecd537d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13673494$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Said, Eisa A.</creatorcontrib><creatorcontrib>Noor, Muhammad Aslam</creatorcontrib><title>Quartic spline method for solving fourth order obstacle boundary value problems</title><title>Journal of computational and applied mathematics</title><description>In this paper, we use uniform quartic polynomial splines to develop a new method, which is used for computing approximations to the solution and its first, second as well as third derivatives for a system of fourth order boundary value problems associated with obstacle, unilateral and contact problems. It is shown that the present method is of order two and gives approximations which are better than those produced by other collocation and finite difference methods. Numerical examples are presented to illustrate the applicability of the new method.</description><subject>Calculus of variations and optimal control</subject><subject>Convergence</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, boundary value problems</subject><subject>Quartic splines</subject><subject>Sciences and techniques of general use</subject><subject>System of differential equations</subject><subject>Variational inequalities</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouH78CUIuih6qkzabNCcR8QuERdRzSJOpG8k2a9Iu-N_bdUWPnmYOv_fezCPkiME5AyYunqGSsgBeylNgZwBcyUJskQmrpSqYlPU2mfwiu2Qv53cAEIrxCZk9DSb13tK8DL5DusB-Hh1tY6I5hpXv3sZ9SP2cxuQw0djk3tiAtIlD50z6pCsTBqTLFJuAi3xAdloTMh7-zH3yenvzcn1fPM7uHq6vHgvLheyLxjTgpFAtCC6BlapS3CjbKhBTh1CLhjdcVK5pW2kkgJJlbVU5rdG6aSVdtU9ONr5j8MeAudcLny2GYDqMQ9alFLLigo3gdAPaFHNO2Opl8ovxcM1Ar-vT3_XpdTcamP6uT4tRd_wTYLI1oU2msz7_iau1v-Ijd7nhcPx25THpbD12Fp1PaHvtov8n6Qt-vYS4</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Al-Said, Eisa A.</creator><creator>Noor, Muhammad Aslam</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20020601</creationdate><title>Quartic spline method for solving fourth order obstacle boundary value problems</title><author>Al-Said, Eisa A. ; Noor, Muhammad Aslam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-bab0d769f06470129394a9cf9065de086b4b463dbff7a7009728c9258ecd537d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Calculus of variations and optimal control</topic><topic>Convergence</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, boundary value problems</topic><topic>Quartic splines</topic><topic>Sciences and techniques of general use</topic><topic>System of differential equations</topic><topic>Variational inequalities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Said, Eisa A.</creatorcontrib><creatorcontrib>Noor, Muhammad Aslam</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Said, Eisa A.</au><au>Noor, Muhammad Aslam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quartic spline method for solving fourth order obstacle boundary value problems</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>143</volume><issue>1</issue><spage>107</spage><epage>116</epage><pages>107-116</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In this paper, we use uniform quartic polynomial splines to develop a new method, which is used for computing approximations to the solution and its first, second as well as third derivatives for a system of fourth order boundary value problems associated with obstacle, unilateral and contact problems. It is shown that the present method is of order two and gives approximations which are better than those produced by other collocation and finite difference methods. Numerical examples are presented to illustrate the applicability of the new method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(01)00497-6</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2002-06, Vol.143 (1), p.107-116 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_27673461 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Calculus of variations and optimal control Convergence Exact sciences and technology Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Partial differential equations, boundary value problems Quartic splines Sciences and techniques of general use System of differential equations Variational inequalities |
title | Quartic spline method for solving fourth order obstacle boundary value problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quartic%20spline%20method%20for%20solving%20fourth%20order%20obstacle%20boundary%20value%20problems&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Al-Said,%20Eisa%20A.&rft.date=2002-06-01&rft.volume=143&rft.issue=1&rft.spage=107&rft.epage=116&rft.pages=107-116&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(01)00497-6&rft_dat=%3Cproquest_cross%3E27673461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-bab0d769f06470129394a9cf9065de086b4b463dbff7a7009728c9258ecd537d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27673461&rft_id=info:pmid/&rfr_iscdi=true |