Loading…
Residual stress and stress gradients in polycrystalline diamond compacts
Thermal residual macrostresses and their gradients were studied in a series of polycrystalline diamond compacts (PDC) using neutron diffraction. The specimens comprised WC–Co cemented carbides with high temperature/high pressure (HTHP) sintered polycrystalline diamond (PCD) layers. Residual stresses...
Saved in:
Published in: | International journal of refractory metals & hard materials 2002-01, Vol.20 (3), p.187-194 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thermal residual macrostresses and their gradients were studied in a series of polycrystalline diamond compacts (PDC) using neutron diffraction. The specimens comprised WC–Co cemented carbides with high temperature/high pressure (HTHP) sintered polycrystalline diamond (PCD) layers. Residual stresses were investigated in two as-sintered variants and after several post-sinter thermal treatments and bonding processes. Measurements were made of (1) the average in-plane stress in the diamond layer for each sample and (2) the average in-plane stress gradient in both the WC–Co substrate and the diamond layer in a subset of the samples. Average in-plane stresses in the diamond layer ranged from −250 to −582 MPa. Sintering process parameters, thermal treatments, and bonding were all found to affect residual stress levels and stress gradient characteristics. Measured average in-plane stress gradients are shown to differ substantially in some cases from linear elastic predictions. |
---|---|
ISSN: | 0263-4368 2213-3917 |
DOI: | 10.1016/S0263-4368(01)00077-4 |