Loading…

Area–volume properties of fluid interfaces in turbulence: scale-local self-similarity and cumulative scale dependence

Area–volume properties of fluid interfaces are investigated to quantify the scale-local and cumulative structure. An area–volume density g3(λ) and ratio Ω3(λ) are introduced to examine the interfacial behaviour as a function of scale λ or across a range of scales, respectively. These measures are de...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2002-07, Vol.462, p.245-254
Main Authors: CATRAKIS, HARIS J., AGUIRRE, ROBERTO C., RUIZ-PLANCARTE, JESUS
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-1240c452e2b157cd4f701b0a16133d6e252a7ebd9d500f036a31037cf2b2efab3
cites
container_end_page 254
container_issue
container_start_page 245
container_title Journal of fluid mechanics
container_volume 462
creator CATRAKIS, HARIS J.
AGUIRRE, ROBERTO C.
RUIZ-PLANCARTE, JESUS
description Area–volume properties of fluid interfaces are investigated to quantify the scale-local and cumulative structure. An area–volume density g3(λ) and ratio Ω3(λ) are introduced to examine the interfacial behaviour as a function of scale λ or across a range of scales, respectively. These measures are demonstrated on mixed-fluid interfaces from whole-field ∼10003 three-dimensional space–time concentration measurements in turbulent jets above the mixing transition, at Re ∼ 20000 and Sc ∼ 2000, recorded by laser-induced-fluorescence and digital-imaging techniques, with Taylor's hypothesis applied. The cumulative structure is scale dependent in Ω3(λ), with a dimension D3(λ) that increases with increasing scale. In contrast, the scale-local structure exhibits self-similarity in g3(λ) with an exponent αg ≈1.3 for these interfaces. The scale dependence in the cumulative structure arises from the large scales, while the self-similarity corresponds to the small-scale area–volume contributions. The small scales exhibit the largest area–volume density and provide the dominant contributions to the total area–volume ratio, which corresponds to ∼10 times the area of a purely large-scale interface for the present flow conditions. The self-similarity in the scale-local structure at small scales provides the key ingredient to extrapolate the area–volume behaviour to higher Reynolds numbers.
doi_str_mv 10.1017/S0022112002008911
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27695791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112002008911</cupid><sourcerecordid>27695791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-1240c452e2b157cd4f701b0a16133d6e252a7ebd9d500f036a31037cf2b2efab3</originalsourceid><addsrcrecordid>eNp1kcGKFDEURYMo2I5-gLuA6K40L0klXe6GYZxRGkTUjZuQSr1IxlRVm1RGZ-c_-Id-iSm6UVFcXcg993FfHiEPgT0FBvrZW8Y4B-BVGNt2ALfIBqTqGq1ke5tsVrtZ_bvkXs5XjIFgnd6QL6cJ7Y9v36_nWEak-zTvMS0BM5099bGEgYZpweStq29hoktJfYk4OXxOs7MRmzhXoRmjb3IYQ7QpLDfUTgN1ZSzRLuEaDygdcI_TsIbvkzvexowPjnpC3r84f3d22exeX7w8O901ToJcGuCSOdly5D202g3SawY9s6BAiEEhb7nV2A_d0DLmmVBWABPaed5z9LYXJ-TJYW7d7HPBvJgxZIcx2gnnkg3Xqmt1BxV89Bd4NZc01W4GJGylqFxbKThQLs05J_Rmn8Jo040BZtZDmH8OUTOPj5Pt-gs-2cmF_DsotFaw1ZVrDlzIC3795dv0ySgtdGvUxRujL1-p7sNua2TlxbGLHfsUho_4R-X_tvkJYj-nzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418436955</pqid></control><display><type>article</type><title>Area–volume properties of fluid interfaces in turbulence: scale-local self-similarity and cumulative scale dependence</title><source>Cambridge University Press</source><creator>CATRAKIS, HARIS J. ; AGUIRRE, ROBERTO C. ; RUIZ-PLANCARTE, JESUS</creator><creatorcontrib>CATRAKIS, HARIS J. ; AGUIRRE, ROBERTO C. ; RUIZ-PLANCARTE, JESUS</creatorcontrib><description>Area–volume properties of fluid interfaces are investigated to quantify the scale-local and cumulative structure. An area–volume density g3(λ) and ratio Ω3(λ) are introduced to examine the interfacial behaviour as a function of scale λ or across a range of scales, respectively. These measures are demonstrated on mixed-fluid interfaces from whole-field ∼10003 three-dimensional space–time concentration measurements in turbulent jets above the mixing transition, at Re ∼ 20000 and Sc ∼ 2000, recorded by laser-induced-fluorescence and digital-imaging techniques, with Taylor's hypothesis applied. The cumulative structure is scale dependent in Ω3(λ), with a dimension D3(λ) that increases with increasing scale. In contrast, the scale-local structure exhibits self-similarity in g3(λ) with an exponent αg ≈1.3 for these interfaces. The scale dependence in the cumulative structure arises from the large scales, while the self-similarity corresponds to the small-scale area–volume contributions. The small scales exhibit the largest area–volume density and provide the dominant contributions to the total area–volume ratio, which corresponds to ∼10 times the area of a purely large-scale interface for the present flow conditions. The self-similarity in the scale-local structure at small scales provides the key ingredient to extrapolate the area–volume behaviour to higher Reynolds numbers.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112002008911</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layer and shear turbulence ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Interfaces ; Physics ; Reynolds number ; Thick shear flows ; Turbulence ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 2002-07, Vol.462, p.245-254</ispartof><rights>2002 Cambridge University Press</rights><rights>2002 INIST-CNRS</rights><rights>Copyright Cambridge University Press Jul 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-1240c452e2b157cd4f701b0a16133d6e252a7ebd9d500f036a31037cf2b2efab3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112002008911/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,72703</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13776187$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CATRAKIS, HARIS J.</creatorcontrib><creatorcontrib>AGUIRRE, ROBERTO C.</creatorcontrib><creatorcontrib>RUIZ-PLANCARTE, JESUS</creatorcontrib><title>Area–volume properties of fluid interfaces in turbulence: scale-local self-similarity and cumulative scale dependence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Area–volume properties of fluid interfaces are investigated to quantify the scale-local and cumulative structure. An area–volume density g3(λ) and ratio Ω3(λ) are introduced to examine the interfacial behaviour as a function of scale λ or across a range of scales, respectively. These measures are demonstrated on mixed-fluid interfaces from whole-field ∼10003 three-dimensional space–time concentration measurements in turbulent jets above the mixing transition, at Re ∼ 20000 and Sc ∼ 2000, recorded by laser-induced-fluorescence and digital-imaging techniques, with Taylor's hypothesis applied. The cumulative structure is scale dependent in Ω3(λ), with a dimension D3(λ) that increases with increasing scale. In contrast, the scale-local structure exhibits self-similarity in g3(λ) with an exponent αg ≈1.3 for these interfaces. The scale dependence in the cumulative structure arises from the large scales, while the self-similarity corresponds to the small-scale area–volume contributions. The small scales exhibit the largest area–volume density and provide the dominant contributions to the total area–volume ratio, which corresponds to ∼10 times the area of a purely large-scale interface for the present flow conditions. The self-similarity in the scale-local structure at small scales provides the key ingredient to extrapolate the area–volume behaviour to higher Reynolds numbers.</description><subject>Boundary layer and shear turbulence</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Interfaces</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Thick shear flows</subject><subject>Turbulence</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kcGKFDEURYMo2I5-gLuA6K40L0klXe6GYZxRGkTUjZuQSr1IxlRVm1RGZ-c_-Id-iSm6UVFcXcg993FfHiEPgT0FBvrZW8Y4B-BVGNt2ALfIBqTqGq1ke5tsVrtZ_bvkXs5XjIFgnd6QL6cJ7Y9v36_nWEak-zTvMS0BM5099bGEgYZpweStq29hoktJfYk4OXxOs7MRmzhXoRmjb3IYQ7QpLDfUTgN1ZSzRLuEaDygdcI_TsIbvkzvexowPjnpC3r84f3d22exeX7w8O901ToJcGuCSOdly5D202g3SawY9s6BAiEEhb7nV2A_d0DLmmVBWABPaed5z9LYXJ-TJYW7d7HPBvJgxZIcx2gnnkg3Xqmt1BxV89Bd4NZc01W4GJGylqFxbKThQLs05J_Rmn8Jo040BZtZDmH8OUTOPj5Pt-gs-2cmF_DsotFaw1ZVrDlzIC3795dv0ySgtdGvUxRujL1-p7sNua2TlxbGLHfsUho_4R-X_tvkJYj-nzg</recordid><startdate>20020710</startdate><enddate>20020710</enddate><creator>CATRAKIS, HARIS J.</creator><creator>AGUIRRE, ROBERTO C.</creator><creator>RUIZ-PLANCARTE, JESUS</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20020710</creationdate><title>Area–volume properties of fluid interfaces in turbulence: scale-local self-similarity and cumulative scale dependence</title><author>CATRAKIS, HARIS J. ; AGUIRRE, ROBERTO C. ; RUIZ-PLANCARTE, JESUS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-1240c452e2b157cd4f701b0a16133d6e252a7ebd9d500f036a31037cf2b2efab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Boundary layer and shear turbulence</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Interfaces</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Thick shear flows</topic><topic>Turbulence</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CATRAKIS, HARIS J.</creatorcontrib><creatorcontrib>AGUIRRE, ROBERTO C.</creatorcontrib><creatorcontrib>RUIZ-PLANCARTE, JESUS</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CATRAKIS, HARIS J.</au><au>AGUIRRE, ROBERTO C.</au><au>RUIZ-PLANCARTE, JESUS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Area–volume properties of fluid interfaces in turbulence: scale-local self-similarity and cumulative scale dependence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2002-07-10</date><risdate>2002</risdate><volume>462</volume><spage>245</spage><epage>254</epage><pages>245-254</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Area–volume properties of fluid interfaces are investigated to quantify the scale-local and cumulative structure. An area–volume density g3(λ) and ratio Ω3(λ) are introduced to examine the interfacial behaviour as a function of scale λ or across a range of scales, respectively. These measures are demonstrated on mixed-fluid interfaces from whole-field ∼10003 three-dimensional space–time concentration measurements in turbulent jets above the mixing transition, at Re ∼ 20000 and Sc ∼ 2000, recorded by laser-induced-fluorescence and digital-imaging techniques, with Taylor's hypothesis applied. The cumulative structure is scale dependent in Ω3(λ), with a dimension D3(λ) that increases with increasing scale. In contrast, the scale-local structure exhibits self-similarity in g3(λ) with an exponent αg ≈1.3 for these interfaces. The scale dependence in the cumulative structure arises from the large scales, while the self-similarity corresponds to the small-scale area–volume contributions. The small scales exhibit the largest area–volume density and provide the dominant contributions to the total area–volume ratio, which corresponds to ∼10 times the area of a purely large-scale interface for the present flow conditions. The self-similarity in the scale-local structure at small scales provides the key ingredient to extrapolate the area–volume behaviour to higher Reynolds numbers.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112002008911</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2002-07, Vol.462, p.245-254
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_27695791
source Cambridge University Press
subjects Boundary layer and shear turbulence
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Instrumentation for fluid dynamics
Interfaces
Physics
Reynolds number
Thick shear flows
Turbulence
Turbulent flows, convection, and heat transfer
title Area–volume properties of fluid interfaces in turbulence: scale-local self-similarity and cumulative scale dependence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Area%E2%80%93volume%20properties%20of%20fluid%20interfaces%20in%20turbulence:%20scale-local%20self-similarity%20and%20cumulative%20scale%20dependence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=CATRAKIS,%20HARIS%20J.&rft.date=2002-07-10&rft.volume=462&rft.spage=245&rft.epage=254&rft.pages=245-254&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112002008911&rft_dat=%3Cproquest_cross%3E27695791%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-1240c452e2b157cd4f701b0a16133d6e252a7ebd9d500f036a31037cf2b2efab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1418436955&rft_id=info:pmid/&rft_cupid=10_1017_S0022112002008911&rfr_iscdi=true