Loading…

Effect on hypoxia/reoxygenation-induced cardiomyocyte injury and Pink1/Parkin pathway

Our study aimed to detect the effects of proprotein convertase subtilisin/kexin type 9 (PCSK9) on exacerbating cardiomyocyte hypoxia/reoxygenation (H/R) injury and the possible mechanism. A cell model of H/R was constructed. PCSK9 mRNA and protein levels were significantly upregulated during AC16 ca...

Full description

Saved in:
Bibliographic Details
Published in:General physiology and biophysics 2023-01, Vol.42 (1), p.87-95
Main Authors: Lu, Xiyang, Huang, Guangwei, Bao, Hailong, Duan, Zonggang, Li, Chao, Lin, Muzhi, Zhou, Haiyan, Luo, Zhenhua, Li, Wei
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Our study aimed to detect the effects of proprotein convertase subtilisin/kexin type 9 (PCSK9) on exacerbating cardiomyocyte hypoxia/reoxygenation (H/R) injury and the possible mechanism. A cell model of H/R was constructed. PCSK9 mRNA and protein levels were significantly upregulated during AC16 cardiomyocyte H/R. Flowmetry detection of apoptosis, as well as JC-1, confirmed that PCSK9 upregulation of autophagy levels was accompanied by apoptosis. Furthermore, in the H/R+si-PCSK9 group, the expression of autophagy-related protein LC3 decreased and P62 increased. At the same time, the presentation of the autophagic pathway Pink1/Parkin was also downregulated. In conclusion, in AC16 cardiomyocytes treated with H/R, PCSK9 expression and autophagy levels were increased; a possible molecular mechanism was the activation of the Pink1/Parkin pathway.
ISSN:0231-5882
DOI:10.4149/gpb_2022045