Loading…

Mechanistic Study of Chemoselectivity for Carbon Radical Hydroxylation versus Chlorination with FeIII(OH)(Cl) Complexes

The FeIII(OH)(Cl) complex resembles the key intermediate proposed for the non‐heme iron halogenases. Goldberg and co‐workers reported that the FeIII(OH)(Cl) RC reacts with triphenylmethyl radical 1 to give an exclusive hydroxylation product. To understand the chemoselectivity of the reaction of RC w...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry, an Asian journal an Asian journal, 2023-03, Vol.18 (6), p.e202201311-n/a
Main Authors: Yang, Miao, Chen, Xiahe, Su, Xingxing, She, Yuan‐Bin, Yang, Yun‐Fang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 6
container_start_page e202201311
container_title Chemistry, an Asian journal
container_volume 18
creator Yang, Miao
Chen, Xiahe
Su, Xingxing
She, Yuan‐Bin
Yang, Yun‐Fang
description The FeIII(OH)(Cl) complex resembles the key intermediate proposed for the non‐heme iron halogenases. Goldberg and co‐workers reported that the FeIII(OH)(Cl) RC reacts with triphenylmethyl radical 1 to give an exclusive hydroxylation product. To understand the chemoselectivity of the reaction of RC with 1, density functional theory (DFT) calculations have been conducted. From RC, the competing pathways were identified as the OH‐transfer, Cl‐transfer, and isomerization pathways. The direct Cl‐transfer is more favorable than direct OH‐transfer by 2.8 kcal/mol. The hydrogen bonding interactions between the hydroxyl group and the pendent amine ligand impede the direct OH‐transfer from RC. Compared with the direct Cl‐transfer pathway, the isomerization pathways require lower barriers. In isomer RCiso2, the equatorial hydroxyl group, which has smaller diabatic bond dissociation energy, prefers to transfer to form the hydroxylation product. In FeIII(Cl)2 RC2 and RC2iso, the equatorial chloride group also prefers to transfer to give the chlorination product. DFT calculations reveal that the equatorial hydroxyl group in the isomers of the FeIII(OH)(Cl) complex prefers to transfer to rebind with the radical to form the hydroxylation product.
doi_str_mv 10.1002/asia.202201311
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2770119402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770119402</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1961-65c842933f071a2636ad3eb40c9c9caa88c60be4b6284f7b4f00257a2d9e0de43</originalsourceid><addsrcrecordid>eNpdkc9LwzAUx4soOKdXzwEv22EzSbM2OY7iXGEycAreStq-soysqUnr1v_ejMkO8g7vB5_3-PK-QfBI8JRgTJ-lU3JKMaWYhIRcBQPCIzJhMfm6vtSU3wZ3zu0wnlEs-CA4vEGxlbVyrSrQpu3KHpkKJVvYGwcailb9qLZHlbEokTY3NXqXpSqkRsu-tObYa9kqP_0B6zrnF7Wxqj7PDqrdogWkaTpaL8ejRI9RYvaNhiO4--CmktrBw18eBp-Ll49kOVmtX9Nkvpo0RHjF0azgjIowrHBMJI3CSJYh5AwXwoeUnBcRzoHlEeWsinNW-U_MYklLAbgEFg6D0fluY813B67N9soVoLWswXQuo3GMCREMU48-_UN3prO1V-cpHsVRzJjwlDhTB6Whzxqr9tL2GcHZyYTsZEJ2MSGbb9L5pQt_ARxafa0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786767449</pqid></control><display><type>article</type><title>Mechanistic Study of Chemoselectivity for Carbon Radical Hydroxylation versus Chlorination with FeIII(OH)(Cl) Complexes</title><source>Wiley</source><creator>Yang, Miao ; Chen, Xiahe ; Su, Xingxing ; She, Yuan‐Bin ; Yang, Yun‐Fang</creator><creatorcontrib>Yang, Miao ; Chen, Xiahe ; Su, Xingxing ; She, Yuan‐Bin ; Yang, Yun‐Fang</creatorcontrib><description>The FeIII(OH)(Cl) complex resembles the key intermediate proposed for the non‐heme iron halogenases. Goldberg and co‐workers reported that the FeIII(OH)(Cl) RC reacts with triphenylmethyl radical 1 to give an exclusive hydroxylation product. To understand the chemoselectivity of the reaction of RC with 1, density functional theory (DFT) calculations have been conducted. From RC, the competing pathways were identified as the OH‐transfer, Cl‐transfer, and isomerization pathways. The direct Cl‐transfer is more favorable than direct OH‐transfer by 2.8 kcal/mol. The hydrogen bonding interactions between the hydroxyl group and the pendent amine ligand impede the direct OH‐transfer from RC. Compared with the direct Cl‐transfer pathway, the isomerization pathways require lower barriers. In isomer RCiso2, the equatorial hydroxyl group, which has smaller diabatic bond dissociation energy, prefers to transfer to form the hydroxylation product. In FeIII(Cl)2 RC2 and RC2iso, the equatorial chloride group also prefers to transfer to give the chlorination product. DFT calculations reveal that the equatorial hydroxyl group in the isomers of the FeIII(OH)(Cl) complex prefers to transfer to rebind with the radical to form the hydroxylation product.</description><identifier>ISSN: 1861-4728</identifier><identifier>EISSN: 1861-471X</identifier><identifier>DOI: 10.1002/asia.202201311</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; chemoselectivity ; Chlorination ; Density functional theory ; Energy of dissociation ; Free energy ; Heat of formation ; Hydrogen bonding ; Hydroxyl groups ; Hydroxylation ; Isomerization ; non-heme iron complex ; reaction mechanisms</subject><ispartof>Chemistry, an Asian journal, 2023-03, Vol.18 (6), p.e202201311-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1007-1852 ; 0000-0002-6287-1640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yang, Miao</creatorcontrib><creatorcontrib>Chen, Xiahe</creatorcontrib><creatorcontrib>Su, Xingxing</creatorcontrib><creatorcontrib>She, Yuan‐Bin</creatorcontrib><creatorcontrib>Yang, Yun‐Fang</creatorcontrib><title>Mechanistic Study of Chemoselectivity for Carbon Radical Hydroxylation versus Chlorination with FeIII(OH)(Cl) Complexes</title><title>Chemistry, an Asian journal</title><description>The FeIII(OH)(Cl) complex resembles the key intermediate proposed for the non‐heme iron halogenases. Goldberg and co‐workers reported that the FeIII(OH)(Cl) RC reacts with triphenylmethyl radical 1 to give an exclusive hydroxylation product. To understand the chemoselectivity of the reaction of RC with 1, density functional theory (DFT) calculations have been conducted. From RC, the competing pathways were identified as the OH‐transfer, Cl‐transfer, and isomerization pathways. The direct Cl‐transfer is more favorable than direct OH‐transfer by 2.8 kcal/mol. The hydrogen bonding interactions between the hydroxyl group and the pendent amine ligand impede the direct OH‐transfer from RC. Compared with the direct Cl‐transfer pathway, the isomerization pathways require lower barriers. In isomer RCiso2, the equatorial hydroxyl group, which has smaller diabatic bond dissociation energy, prefers to transfer to form the hydroxylation product. In FeIII(Cl)2 RC2 and RC2iso, the equatorial chloride group also prefers to transfer to give the chlorination product. DFT calculations reveal that the equatorial hydroxyl group in the isomers of the FeIII(OH)(Cl) complex prefers to transfer to rebind with the radical to form the hydroxylation product.</description><subject>Chemistry</subject><subject>chemoselectivity</subject><subject>Chlorination</subject><subject>Density functional theory</subject><subject>Energy of dissociation</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Hydrogen bonding</subject><subject>Hydroxyl groups</subject><subject>Hydroxylation</subject><subject>Isomerization</subject><subject>non-heme iron complex</subject><subject>reaction mechanisms</subject><issn>1861-4728</issn><issn>1861-471X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc9LwzAUx4soOKdXzwEv22EzSbM2OY7iXGEycAreStq-soysqUnr1v_ejMkO8g7vB5_3-PK-QfBI8JRgTJ-lU3JKMaWYhIRcBQPCIzJhMfm6vtSU3wZ3zu0wnlEs-CA4vEGxlbVyrSrQpu3KHpkKJVvYGwcailb9qLZHlbEokTY3NXqXpSqkRsu-tObYa9kqP_0B6zrnF7Wxqj7PDqrdogWkaTpaL8ejRI9RYvaNhiO4--CmktrBw18eBp-Ll49kOVmtX9Nkvpo0RHjF0azgjIowrHBMJI3CSJYh5AwXwoeUnBcRzoHlEeWsinNW-U_MYklLAbgEFg6D0fluY813B67N9soVoLWswXQuo3GMCREMU48-_UN3prO1V-cpHsVRzJjwlDhTB6Whzxqr9tL2GcHZyYTsZEJ2MSGbb9L5pQt_ARxafa0</recordid><startdate>20230314</startdate><enddate>20230314</enddate><creator>Yang, Miao</creator><creator>Chen, Xiahe</creator><creator>Su, Xingxing</creator><creator>She, Yuan‐Bin</creator><creator>Yang, Yun‐Fang</creator><general>Wiley Subscription Services, Inc</general><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1007-1852</orcidid><orcidid>https://orcid.org/0000-0002-6287-1640</orcidid></search><sort><creationdate>20230314</creationdate><title>Mechanistic Study of Chemoselectivity for Carbon Radical Hydroxylation versus Chlorination with FeIII(OH)(Cl) Complexes</title><author>Yang, Miao ; Chen, Xiahe ; Su, Xingxing ; She, Yuan‐Bin ; Yang, Yun‐Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1961-65c842933f071a2636ad3eb40c9c9caa88c60be4b6284f7b4f00257a2d9e0de43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>chemoselectivity</topic><topic>Chlorination</topic><topic>Density functional theory</topic><topic>Energy of dissociation</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Hydrogen bonding</topic><topic>Hydroxyl groups</topic><topic>Hydroxylation</topic><topic>Isomerization</topic><topic>non-heme iron complex</topic><topic>reaction mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Miao</creatorcontrib><creatorcontrib>Chen, Xiahe</creatorcontrib><creatorcontrib>Su, Xingxing</creatorcontrib><creatorcontrib>She, Yuan‐Bin</creatorcontrib><creatorcontrib>Yang, Yun‐Fang</creatorcontrib><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry, an Asian journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Miao</au><au>Chen, Xiahe</au><au>Su, Xingxing</au><au>She, Yuan‐Bin</au><au>Yang, Yun‐Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Study of Chemoselectivity for Carbon Radical Hydroxylation versus Chlorination with FeIII(OH)(Cl) Complexes</atitle><jtitle>Chemistry, an Asian journal</jtitle><date>2023-03-14</date><risdate>2023</risdate><volume>18</volume><issue>6</issue><spage>e202201311</spage><epage>n/a</epage><pages>e202201311-n/a</pages><issn>1861-4728</issn><eissn>1861-471X</eissn><abstract>The FeIII(OH)(Cl) complex resembles the key intermediate proposed for the non‐heme iron halogenases. Goldberg and co‐workers reported that the FeIII(OH)(Cl) RC reacts with triphenylmethyl radical 1 to give an exclusive hydroxylation product. To understand the chemoselectivity of the reaction of RC with 1, density functional theory (DFT) calculations have been conducted. From RC, the competing pathways were identified as the OH‐transfer, Cl‐transfer, and isomerization pathways. The direct Cl‐transfer is more favorable than direct OH‐transfer by 2.8 kcal/mol. The hydrogen bonding interactions between the hydroxyl group and the pendent amine ligand impede the direct OH‐transfer from RC. Compared with the direct Cl‐transfer pathway, the isomerization pathways require lower barriers. In isomer RCiso2, the equatorial hydroxyl group, which has smaller diabatic bond dissociation energy, prefers to transfer to form the hydroxylation product. In FeIII(Cl)2 RC2 and RC2iso, the equatorial chloride group also prefers to transfer to give the chlorination product. DFT calculations reveal that the equatorial hydroxyl group in the isomers of the FeIII(OH)(Cl) complex prefers to transfer to rebind with the radical to form the hydroxylation product.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asia.202201311</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1007-1852</orcidid><orcidid>https://orcid.org/0000-0002-6287-1640</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-4728
ispartof Chemistry, an Asian journal, 2023-03, Vol.18 (6), p.e202201311-n/a
issn 1861-4728
1861-471X
language eng
recordid cdi_proquest_miscellaneous_2770119402
source Wiley
subjects Chemistry
chemoselectivity
Chlorination
Density functional theory
Energy of dissociation
Free energy
Heat of formation
Hydrogen bonding
Hydroxyl groups
Hydroxylation
Isomerization
non-heme iron complex
reaction mechanisms
title Mechanistic Study of Chemoselectivity for Carbon Radical Hydroxylation versus Chlorination with FeIII(OH)(Cl) Complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Study%20of%20Chemoselectivity%20for%20Carbon%20Radical%20Hydroxylation%20versus%20Chlorination%20with%20FeIII(OH)(Cl)%20Complexes&rft.jtitle=Chemistry,%20an%20Asian%20journal&rft.au=Yang,%20Miao&rft.date=2023-03-14&rft.volume=18&rft.issue=6&rft.spage=e202201311&rft.epage=n/a&rft.pages=e202201311-n/a&rft.issn=1861-4728&rft.eissn=1861-471X&rft_id=info:doi/10.1002/asia.202201311&rft_dat=%3Cproquest_wiley%3E2770119402%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1961-65c842933f071a2636ad3eb40c9c9caa88c60be4b6284f7b4f00257a2d9e0de43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786767449&rft_id=info:pmid/&rfr_iscdi=true