Loading…

Fully automated accurate patient positioning in computed tomography using anterior–posterior localizer images and a deep neural network: a dual-center study

Objectives This study aimed to improve patient positioning accuracy by relying on a CT localizer and a deep neural network to optimize image quality and radiation dose. Methods We included 5754 chest CT axial and anterior–posterior (AP) images from two different centers, C1 and C2. After pre-process...

Full description

Saved in:
Bibliographic Details
Published in:European radiology 2023-05, Vol.33 (5), p.3243-3252
Main Authors: Salimi, Yazdan, Shiri, Isaac, Akavanallaf, Azadeh, Mansouri, Zahra, Arabi, Hossein, Zaidi, Habib
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objectives This study aimed to improve patient positioning accuracy by relying on a CT localizer and a deep neural network to optimize image quality and radiation dose. Methods We included 5754 chest CT axial and anterior–posterior (AP) images from two different centers, C1 and C2. After pre-processing, images were split into training (80%) and test (20%) datasets. A deep neural network was trained to generate 3D axial images from the AP localizer. The geometric centerlines of patient bodies were indicated by creating a bounding box on the predicted images. The distance between the body centerline, estimated by the deep learning model and ground truth (BCAP), was compared with patient mis-centering during manual positioning (BCMP). We evaluated the performance of our model in terms of distance between the lung centerline estimated by the deep learning model and the ground truth (LCAP). Results The error in terms of BCAP was − 0.75 ± 7.73 mm and 2.06 ± 10.61 mm for C1 and C2, respectively. This error was significantly lower than BCMP, which achieved an error of 9.35 ± 14.94 and 13.98 ± 14.5 mm for C1 and C2, respectively. The absolute BCAP was 5.7 ± 5.26 and 8.26 ± 6.96 mm for C1 and C2, respectively. The LCAP metric was 1.56 ± 10.8 and −0.27 ± 16.29 mm for C1 and C2, respectively. The error in terms of BCAP and LCAP was higher for larger patients ( p value 
ISSN:1432-1084
0938-7994
1432-1084
DOI:10.1007/s00330-023-09424-3