Loading…
Revealing impacts of electrolyte speciation on ionic charge storage in aluminum-quinone batteries by NMR spectroscopy
[Display omitted] •Ionic charge storage mechanisms are studied in aluminum-quinone batteries by NMR spectroscopy.•Unique electrolyte speciations yield different charge-compensating Al environments.•Structural origins of complexed ions are linked to quadrupolar parameters.•Electroactive ion generatio...
Saved in:
Published in: | Journal of magnetic resonance (1997) 2023-03, Vol.348, p.107374-107374, Article 107374 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-e099d1e5e50b0a459fddcbdb6ded0003f64ff8986089ab36ddb1de0dc51bdd0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-e099d1e5e50b0a459fddcbdb6ded0003f64ff8986089ab36ddb1de0dc51bdd0d3 |
container_end_page | 107374 |
container_issue | |
container_start_page | 107374 |
container_title | Journal of magnetic resonance (1997) |
container_volume | 348 |
creator | Gordon, Leo W. Wang, Jonah Messinger, Robert J. |
description | [Display omitted]
•Ionic charge storage mechanisms are studied in aluminum-quinone batteries by NMR spectroscopy.•Unique electrolyte speciations yield different charge-compensating Al environments.•Structural origins of complexed ions are linked to quadrupolar parameters.•Electroactive ion generation and desolvation pathways are validated experimentally.
Rechargeable aluminum-organic batteries are composed of earth-abundant, sustainable electrode materials while the molecular structures of the organic molecules can be controlled to tune their electrochemical properties. Aluminum metal batteries typically use electrolytes based on chloroaluminate ionic liquids or deep eutectic solvents that are comprised of polyatomic aluminum-containing species. Quinone-based organic electrodes store charge when chloroaluminous cations (AlCl2+) charge compensate their electrochemically reduced carbonyl groups, even when such cations are not natively present in the electrolyte. However, how ion speciation in the electrolyte affects the ion charge storage mechanism, and resultant battery performance, is not well understood. Here, we couple solid-state NMR spectroscopy with electrochemical and computational methods to show for the first time that electrolyte-dependent ion speciation significantly alters the molecular-level environments of the charge-compensating cations, which in turn influences battery properties. Using 1,5-dichloroanthraquinone (DCQ) for the first time as an organic electrode material, we utilize solid-state dipolar-mediated and multiple-quantum NMR experiments to elucidate distinct aluminum coordination environments upon discharge that depend significantly on electrolyte speciation. We relate DFT-calculated NMR parameters to experimentally determined quantities, revealing insights into their origins. The results establish that electrolyte ion speciation impacts the local environments of charge-compensating chloroaluminous cations and is a crucial design parameter for rechargeable aluminum-quinone batteries. |
doi_str_mv | 10.1016/j.jmr.2023.107374 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2770478059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780723000095</els_id><sourcerecordid>2770478059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e099d1e5e50b0a459fddcbdb6ded0003f64ff8986089ab36ddb1de0dc51bdd0d3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMo3h_AjWTppuPJtE1bXIl4Ay8gug65nI4Z2qYmqTBvb8ZRl0LgT8h_PpKPkBMGMwaMny9ny97P5jDP07nKq2KL7DNoeAZ1ybe_95BVNVR75CCEJQBjZQW7ZC_nFfCCl_tkesFPlJ0dFtT2o9QxUNdS7FBH77pVRBpG1FZG6waaVgqrqX6XfpGuovMypR2o7KbeDlOffUx2cANSJWNEbzFQtaJPjy_fnMQM2o2rI7LTyi7g8U8ekreb69eru-zh-fb-6vIh03nDY4bQNIZhiSUokEXZtMZoZRQ3aAAgb3nRtnVTc6gbqXJujGIGweiSKWPA5IfkbMMdvfuYMETR26Cx6-SAbgpiXlVQJEFlk6psU9XpjcFjK0Zve-lXgoFY2xZLkWyLtW2xsZ1mTn_wk-rR_E386k2Fi00B0yc_LXoRtMVBo7E-2RDG2X_wX4Ofk2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770478059</pqid></control><display><type>article</type><title>Revealing impacts of electrolyte speciation on ionic charge storage in aluminum-quinone batteries by NMR spectroscopy</title><source>ScienceDirect Journals</source><creator>Gordon, Leo W. ; Wang, Jonah ; Messinger, Robert J.</creator><creatorcontrib>Gordon, Leo W. ; Wang, Jonah ; Messinger, Robert J.</creatorcontrib><description>[Display omitted]
•Ionic charge storage mechanisms are studied in aluminum-quinone batteries by NMR spectroscopy.•Unique electrolyte speciations yield different charge-compensating Al environments.•Structural origins of complexed ions are linked to quadrupolar parameters.•Electroactive ion generation and desolvation pathways are validated experimentally.
Rechargeable aluminum-organic batteries are composed of earth-abundant, sustainable electrode materials while the molecular structures of the organic molecules can be controlled to tune their electrochemical properties. Aluminum metal batteries typically use electrolytes based on chloroaluminate ionic liquids or deep eutectic solvents that are comprised of polyatomic aluminum-containing species. Quinone-based organic electrodes store charge when chloroaluminous cations (AlCl2+) charge compensate their electrochemically reduced carbonyl groups, even when such cations are not natively present in the electrolyte. However, how ion speciation in the electrolyte affects the ion charge storage mechanism, and resultant battery performance, is not well understood. Here, we couple solid-state NMR spectroscopy with electrochemical and computational methods to show for the first time that electrolyte-dependent ion speciation significantly alters the molecular-level environments of the charge-compensating cations, which in turn influences battery properties. Using 1,5-dichloroanthraquinone (DCQ) for the first time as an organic electrode material, we utilize solid-state dipolar-mediated and multiple-quantum NMR experiments to elucidate distinct aluminum coordination environments upon discharge that depend significantly on electrolyte speciation. We relate DFT-calculated NMR parameters to experimentally determined quantities, revealing insights into their origins. The results establish that electrolyte ion speciation impacts the local environments of charge-compensating chloroaluminous cations and is a crucial design parameter for rechargeable aluminum-quinone batteries.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2023.107374</identifier><identifier>PMID: 36706465</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aluminum-organic batteries ; DFT calculations ; Dipolar-mediated NMR ; Ionic liquid analogues ; Ionic liquids ; Multiple-quantum NMR ; solid-state NMR</subject><ispartof>Journal of magnetic resonance (1997), 2023-03, Vol.348, p.107374-107374, Article 107374</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e099d1e5e50b0a459fddcbdb6ded0003f64ff8986089ab36ddb1de0dc51bdd0d3</citedby><cites>FETCH-LOGICAL-c396t-e099d1e5e50b0a459fddcbdb6ded0003f64ff8986089ab36ddb1de0dc51bdd0d3</cites><orcidid>0000-0002-5537-3870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36706465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gordon, Leo W.</creatorcontrib><creatorcontrib>Wang, Jonah</creatorcontrib><creatorcontrib>Messinger, Robert J.</creatorcontrib><title>Revealing impacts of electrolyte speciation on ionic charge storage in aluminum-quinone batteries by NMR spectroscopy</title><title>Journal of magnetic resonance (1997)</title><addtitle>J Magn Reson</addtitle><description>[Display omitted]
•Ionic charge storage mechanisms are studied in aluminum-quinone batteries by NMR spectroscopy.•Unique electrolyte speciations yield different charge-compensating Al environments.•Structural origins of complexed ions are linked to quadrupolar parameters.•Electroactive ion generation and desolvation pathways are validated experimentally.
Rechargeable aluminum-organic batteries are composed of earth-abundant, sustainable electrode materials while the molecular structures of the organic molecules can be controlled to tune their electrochemical properties. Aluminum metal batteries typically use electrolytes based on chloroaluminate ionic liquids or deep eutectic solvents that are comprised of polyatomic aluminum-containing species. Quinone-based organic electrodes store charge when chloroaluminous cations (AlCl2+) charge compensate their electrochemically reduced carbonyl groups, even when such cations are not natively present in the electrolyte. However, how ion speciation in the electrolyte affects the ion charge storage mechanism, and resultant battery performance, is not well understood. Here, we couple solid-state NMR spectroscopy with electrochemical and computational methods to show for the first time that electrolyte-dependent ion speciation significantly alters the molecular-level environments of the charge-compensating cations, which in turn influences battery properties. Using 1,5-dichloroanthraquinone (DCQ) for the first time as an organic electrode material, we utilize solid-state dipolar-mediated and multiple-quantum NMR experiments to elucidate distinct aluminum coordination environments upon discharge that depend significantly on electrolyte speciation. We relate DFT-calculated NMR parameters to experimentally determined quantities, revealing insights into their origins. The results establish that electrolyte ion speciation impacts the local environments of charge-compensating chloroaluminous cations and is a crucial design parameter for rechargeable aluminum-quinone batteries.</description><subject>Aluminum-organic batteries</subject><subject>DFT calculations</subject><subject>Dipolar-mediated NMR</subject><subject>Ionic liquid analogues</subject><subject>Ionic liquids</subject><subject>Multiple-quantum NMR</subject><subject>solid-state NMR</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMo3h_AjWTppuPJtE1bXIl4Ay8gug65nI4Z2qYmqTBvb8ZRl0LgT8h_PpKPkBMGMwaMny9ny97P5jDP07nKq2KL7DNoeAZ1ybe_95BVNVR75CCEJQBjZQW7ZC_nFfCCl_tkesFPlJ0dFtT2o9QxUNdS7FBH77pVRBpG1FZG6waaVgqrqX6XfpGuovMypR2o7KbeDlOffUx2cANSJWNEbzFQtaJPjy_fnMQM2o2rI7LTyi7g8U8ekreb69eru-zh-fb-6vIh03nDY4bQNIZhiSUokEXZtMZoZRQ3aAAgb3nRtnVTc6gbqXJujGIGweiSKWPA5IfkbMMdvfuYMETR26Cx6-SAbgpiXlVQJEFlk6psU9XpjcFjK0Zve-lXgoFY2xZLkWyLtW2xsZ1mTn_wk-rR_E386k2Fi00B0yc_LXoRtMVBo7E-2RDG2X_wX4Ofk2s</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Gordon, Leo W.</creator><creator>Wang, Jonah</creator><creator>Messinger, Robert J.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5537-3870</orcidid></search><sort><creationdate>202303</creationdate><title>Revealing impacts of electrolyte speciation on ionic charge storage in aluminum-quinone batteries by NMR spectroscopy</title><author>Gordon, Leo W. ; Wang, Jonah ; Messinger, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e099d1e5e50b0a459fddcbdb6ded0003f64ff8986089ab36ddb1de0dc51bdd0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum-organic batteries</topic><topic>DFT calculations</topic><topic>Dipolar-mediated NMR</topic><topic>Ionic liquid analogues</topic><topic>Ionic liquids</topic><topic>Multiple-quantum NMR</topic><topic>solid-state NMR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, Leo W.</creatorcontrib><creatorcontrib>Wang, Jonah</creatorcontrib><creatorcontrib>Messinger, Robert J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, Leo W.</au><au>Wang, Jonah</au><au>Messinger, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing impacts of electrolyte speciation on ionic charge storage in aluminum-quinone batteries by NMR spectroscopy</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><addtitle>J Magn Reson</addtitle><date>2023-03</date><risdate>2023</risdate><volume>348</volume><spage>107374</spage><epage>107374</epage><pages>107374-107374</pages><artnum>107374</artnum><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>[Display omitted]
•Ionic charge storage mechanisms are studied in aluminum-quinone batteries by NMR spectroscopy.•Unique electrolyte speciations yield different charge-compensating Al environments.•Structural origins of complexed ions are linked to quadrupolar parameters.•Electroactive ion generation and desolvation pathways are validated experimentally.
Rechargeable aluminum-organic batteries are composed of earth-abundant, sustainable electrode materials while the molecular structures of the organic molecules can be controlled to tune their electrochemical properties. Aluminum metal batteries typically use electrolytes based on chloroaluminate ionic liquids or deep eutectic solvents that are comprised of polyatomic aluminum-containing species. Quinone-based organic electrodes store charge when chloroaluminous cations (AlCl2+) charge compensate their electrochemically reduced carbonyl groups, even when such cations are not natively present in the electrolyte. However, how ion speciation in the electrolyte affects the ion charge storage mechanism, and resultant battery performance, is not well understood. Here, we couple solid-state NMR spectroscopy with electrochemical and computational methods to show for the first time that electrolyte-dependent ion speciation significantly alters the molecular-level environments of the charge-compensating cations, which in turn influences battery properties. Using 1,5-dichloroanthraquinone (DCQ) for the first time as an organic electrode material, we utilize solid-state dipolar-mediated and multiple-quantum NMR experiments to elucidate distinct aluminum coordination environments upon discharge that depend significantly on electrolyte speciation. We relate DFT-calculated NMR parameters to experimentally determined quantities, revealing insights into their origins. The results establish that electrolyte ion speciation impacts the local environments of charge-compensating chloroaluminous cations and is a crucial design parameter for rechargeable aluminum-quinone batteries.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36706465</pmid><doi>10.1016/j.jmr.2023.107374</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5537-3870</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1090-7807 |
ispartof | Journal of magnetic resonance (1997), 2023-03, Vol.348, p.107374-107374, Article 107374 |
issn | 1090-7807 1096-0856 |
language | eng |
recordid | cdi_proquest_miscellaneous_2770478059 |
source | ScienceDirect Journals |
subjects | Aluminum-organic batteries DFT calculations Dipolar-mediated NMR Ionic liquid analogues Ionic liquids Multiple-quantum NMR solid-state NMR |
title | Revealing impacts of electrolyte speciation on ionic charge storage in aluminum-quinone batteries by NMR spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20impacts%20of%20electrolyte%20speciation%20on%20ionic%20charge%20storage%20in%20aluminum-quinone%20batteries%20by%20NMR%20spectroscopy&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Gordon,%20Leo%20W.&rft.date=2023-03&rft.volume=348&rft.spage=107374&rft.epage=107374&rft.pages=107374-107374&rft.artnum=107374&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2023.107374&rft_dat=%3Cproquest_cross%3E2770478059%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-e099d1e5e50b0a459fddcbdb6ded0003f64ff8986089ab36ddb1de0dc51bdd0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770478059&rft_id=info:pmid/36706465&rfr_iscdi=true |