Loading…

Sol-emulsion-gel synthesis of hollow mullite microspheres

Hollow mullite microspheres were obtained from emulsified diphasic sols by an ion extraction method. The surfactant concentration and viscosity of the sols were found to affect the characteristics of the derived microspheres. The gel and calcined microspheres were investigated by using thermogravime...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2002-01, Vol.37 (2), p.343-348
Main Authors: NASKAR, M. K, CHATTERJEE, M, LAKSHMI, N. S
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hollow mullite microspheres were obtained from emulsified diphasic sols by an ion extraction method. The surfactant concentration and viscosity of the sols were found to affect the characteristics of the derived microspheres. The gel and calcined microspheres were investigated by using thermogravimetry analysis (TGA), differential thermal analysis (DTA), Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), optical and scanning electron microscopy (SEM) and particle size analysis. TGA indicated the removal of most of the volatiles, i.e. 30.77 wt% up to about 500°C. Crystallization of the Si-Al spinel at 900°–970°C in gel microspheres was confirmed by DTA and XRD. XRD results also showed the formation of orthorhombic mullite at 1200°C. FTIR indicated the sequence of transformations taking place during heat-treatment of gel microspheres at different temperatures. The optical and scanning electron microscopy confirmed the spherical morphology of the gel and calcined particles. Formation of hollow microspheres with a single cavity was identified by SEM. The particle size distribution of the mullite microspheres calcined at 1300°C/1h exhibited a size range of 6–100 μm with an average particle size (d50) of 22.5 μm.
ISSN:0022-2461
1573-4803
DOI:10.1023/A:1013656413578