Loading…
Unified torque scaling in counter-rotating suspension Taylor-Couette flow
Torque measurements are reported for the Taylor-Couette flow of a neutrally buoyant non-colloidal suspension in the counter-rotation regime up to a particle volume fraction of [Formula: see text]. A unified scaling relation for the dimensionless torque (the pseudo-Nusselt number) of the form [Formul...
Saved in:
Published in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2023-03, Vol.381 (2243), p.20220226-20220226 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Torque measurements are reported for the Taylor-Couette flow of a neutrally buoyant non-colloidal suspension in the counter-rotation regime up to a particle volume fraction of [Formula: see text]. A unified scaling relation for the dimensionless torque (the pseudo-Nusselt number) of the form [Formula: see text] is shown to hold over a range of Taylor numbers [Formula: see text] that covers primary, secondary and tertiary bifurcating states; here, [Formula: see text] is the reduced Taylor number, [Formula: see text] is the critical Taylor number at primary bifurcation and [Formula: see text] is the relative viscosity of the suspension. Possible effects of flow transitions and inhomogeneous distribution of particles on torque scaling are discussed. This article is part of the theme issue 'Taylor-Couette and related flows on the centennial of Taylor's seminal
paper (part 1)'. |
---|---|
ISSN: | 1364-503X 1471-2962 |
DOI: | 10.1098/rsta.2022.0226 |