Loading…
Improved pre-test likelihood estimation of coronary artery disease using phonocardiography
Current early risk stratification of coronary artery disease (CAD) consists of pre-test probability scoring such as the 2019 ESC guidelines on chronic coronary syndromes (ESC2019), which has low specificity and thus rule-out capacity. A newer clinical risk factor model (risk factor-weighted clinical...
Saved in:
Published in: | European heart journal. Digital health 2022-12, Vol.3 (4), p.600-609 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Current early risk stratification of coronary artery disease (CAD) consists of pre-test probability scoring such as the 2019 ESC guidelines on chronic coronary syndromes (ESC2019), which has low specificity and thus rule-out capacity. A newer clinical risk factor model (risk factor-weighted clinical likelihood, RF-CL) showed significantly improved rule-out capacity over the ESC2019 model. The aim of the current study was to investigate if the addition of acoustic features to the RF-CL model could improve the rule-out potential of the best performing clinical risk factor models.
Four studies with heart sound recordings from 2222 patients were pooled and distributed into two data sets: training and test. From a feature bank of 40 acoustic features, a forward-selection technique was used to select three features that were added to the RF-CL model. Using a cutoff of 5% predicted risk of CAD, the developed acoustic-weighted clinical likelihood (A-CL) model showed significantly (
< 0.05) higher specificity of 48.6% than the RF-CL model (specificity of 41.5%) and ESC 2019 model (specificity of 6.9%) while having the same sensitivity of 84.9% as the RF-CL model. Area under the curve of the receiver operating characteristic for the three models was 72.5% for ESC2019, 76.7% for RF-CL, and 79.5% for A-CL.
The proposed A-CL model offers significantly improved rule-out capacity over the ESC2019 model and showed better overall performance than the RF-CL model. The addition of acoustic features to the RF-CL model was shown to significantly improve early risk stratification of symptomatic patients suspected of having stable CAD. |
---|---|
ISSN: | 2634-3916 2634-3916 |
DOI: | 10.1093/ehjdh/ztac057 |