Loading…

Improved pre-test likelihood estimation of coronary artery disease using phonocardiography

Current early risk stratification of coronary artery disease (CAD) consists of pre-test probability scoring such as the 2019 ESC guidelines on chronic coronary syndromes (ESC2019), which has low specificity and thus rule-out capacity. A newer clinical risk factor model (risk factor-weighted clinical...

Full description

Saved in:
Bibliographic Details
Published in:European heart journal. Digital health 2022-12, Vol.3 (4), p.600-609
Main Authors: Larsen, Bjarke Skogstad, Winther, Simon, Nissen, Louise, Diederichsen, Axel, Bøttcher, Morten, Renker, Matthias, Struijk, Johannes Jan, Christensen, Mads Græsbøll, Schmidt, Samuel Emil
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current early risk stratification of coronary artery disease (CAD) consists of pre-test probability scoring such as the 2019 ESC guidelines on chronic coronary syndromes (ESC2019), which has low specificity and thus rule-out capacity. A newer clinical risk factor model (risk factor-weighted clinical likelihood, RF-CL) showed significantly improved rule-out capacity over the ESC2019 model. The aim of the current study was to investigate if the addition of acoustic features to the RF-CL model could improve the rule-out potential of the best performing clinical risk factor models. Four studies with heart sound recordings from 2222 patients were pooled and distributed into two data sets: training and test. From a feature bank of 40 acoustic features, a forward-selection technique was used to select three features that were added to the RF-CL model. Using a cutoff of 5% predicted risk of CAD, the developed acoustic-weighted clinical likelihood (A-CL) model showed significantly ( < 0.05) higher specificity of 48.6% than the RF-CL model (specificity of 41.5%) and ESC 2019 model (specificity of 6.9%) while having the same sensitivity of 84.9% as the RF-CL model. Area under the curve of the receiver operating characteristic for the three models was 72.5% for ESC2019, 76.7% for RF-CL, and 79.5% for A-CL. The proposed A-CL model offers significantly improved rule-out capacity over the ESC2019 model and showed better overall performance than the RF-CL model. The addition of acoustic features to the RF-CL model was shown to significantly improve early risk stratification of symptomatic patients suspected of having stable CAD.
ISSN:2634-3916
2634-3916
DOI:10.1093/ehjdh/ztac057