Loading…
X‑ray Insights into Formation of −O Functional Groups on MXenes: Two-Step Dehydrogenation of Adsorbed Water
Engineered MXene surfaces with more −O functional groups are feasible for realizing higher energy density due to their higher theoretical capacitance. However, there have been only a few explorations of this regulation mechanism. Investigating the formation source and mechanism is conducive to expan...
Saved in:
Published in: | Nano letters 2023-02, Vol.23 (4), p.1401-1408 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Engineered MXene surfaces with more −O functional groups are feasible for realizing higher energy density due to their higher theoretical capacitance. However, there have been only a few explorations of this regulation mechanism. Investigating the formation source and mechanism is conducive to expanding the adjustment method from the top-down perspective. Herein, for the first time, the formation dynamics of −O functional groups on Mo2CT x are discovered as a two-step dehydrogenation of adsorbed water through in situ near-ambient-pressure X-ray photoelectron spectroscopy, further confirmed by ab initio molecular dynamics simulations. From this, the controllable substitution of −F functional groups with −O functional groups is achieved on Mo2CT x during electrochemical cycling in an aqueous electrolyte. The obtained Mo2CT x with rich −O groups exhibits a high capacitance of 163.2 F g –1 at 50 mV s –1, together with excellent stability. These results offer new insights toward engineering surface functional groups of MXenes for many specific applications. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.2c04712 |